Simscape ${ }^{\text {m" }}$ Driveline $^{\text {Tn }}$ Reference

MATLAB®\&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
www.mathworks.com
www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Simscape ${ }^{\mathrm{TM}}$ Driveline $^{\mathrm{TM}}$ Reference
© COPYRIGHT 2004-2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/t rademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

Revision History

September 2010 Online only April 2011 Online only September 2011 Online only March $2012 \quad$ Online only
September 2012 Online only
March 2013 Online only
September 2013 Online only
March 2014 Online only
October 2014 Online only
March 2015 Online only
September 2015 Online only
March $2016 \quad$ Online only
September 2016 Online only
March 2017 Online only
September 2017 Online only
March 2018 Online only
September 2018 Online only
March $2019 \quad$ Online only
September 2019 Online only

New for Version 2.0 Beta (Release 2010b+)
Revised for Version 2.0 (Release 2011a)
Revised for Version 2.1 (Release 2011b)
Revised for Version 2.2 (Release 2012a)
Revised for Version 2.3 (Release 2012b)
Revised for Version 2.4 (Release 2013a)
Revised for Version 2.5 (Release 2013b)
Revised for Version 2.6 (Release 2014a)
Revised for Version 2.7 (Release 2014b)
Revised for Version 2.8 (Release 2015a)
Revised for Version 2.9 (Release 2015b)
Revised for Version 2.10 (Release 2016a)
(Renamed from SimDriveline ${ }^{\text {TM }}$ Reference)
Revised for Version 2.11 (Release 2016b)
Revised for Version 2.12 (Release 2017a)
Revised for Version 2.13 (Release 2017b)
Revised for Version 2.14 (Release 2018a)
Revised for Version 2.15 (Release 2018b)
Revised for Version 2.16 (Release 2019a)
Revised for Version 3.0 (Release 2019b)

1

Technical Conventions
A
Driveline Abbreviations and Conventions A-2
Abbreviations . A- A-2
Angular Motion . A-2
Gear Ratios . A-2

Parameter Dependencies
B
Parameter Dependencies . B-2
Parameter Dependency Tables . B-2

Bibliography
C

Blocks - Alphabetical List

4-Speed CR-CR

Clutch schedule for a four-speed carrier ring-carrier ring transmission Library: Simscape / Driveline / Transmissions

Description

The 4-Speed CR-CR block consists of two planetary gear sets and five disk friction clutches. The follower shaft connects to the planet gear carrier of the output planetary gear and the ring gear of the input planetary gear. The clutches are configured to implement four ratios, one reverse ratio, and neutral. The reverse clutch and two of the clutches determine which gears the base shaft connects to. The other two clutches act as brakes, grounding various gears of the planetary sets to the transmission housing.

This diagram shows a four-speed carrier ring-carrier ring transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram.

Label	Component
I.P.G.	Input planetary gear
O.P.G.	Output planetary gear
R	Ring gear

Label	Component
C	Planet gear carrier
S	Sun gear
R	Reverse clutch
A-B	Forward clutches that control the power flow path
C-D	Forward, braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
g_{1}=\frac{N_{R I}}{N_{S I}}
$$

and

$$
g_{2}=\frac{N_{R O}}{N_{S O}},
$$

where:

- N_{RI} is the number of teeth in the planetary ring gear on the input shaft side.
- $N_{\text {SI }}$ is the number of teeth in the planetary sun gear on the input shaft side.
- N_{RO} is the number of teeth in the planetary ring gear on the output shaft side.
- $N_{\text {SO }}$ is the number of teeth in the planetary sun gear on the output shaft side.

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the power-flow diagrams for each gear of the 4-Speed CR-CR block.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The power-flow diagrams show the power flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Gear	Clutch Schedule					Drive Ratio Equation	Default Ratio	Power Flow
R	00	0	0	1	1	- g_{1}	-2	

Ports

Input

Gear - Numerical input for the gear

scalar
Specify -1 for reverse, 0 for neutral, and 1-4 for the forward gears.

Data Types: single | double

Conserving

B - Base interface

mechanical rotational
Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation

Neutral (default)|4|3|2|1|Reverse
Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
10-Speed | 4-Speed Ravigneaux | 6-Speed Lepelletier | 7-Speed Lepelletier | 8-Speed | 9Speed
\section*{Introduced in R2015a}

4-Speed Ravigneaux

Clutch schedule for a four-speed Ravigneaux transmission Library: Simscape / Driveline / Transmissions

Description

The 4-Speed Ravigneaux block consists of one Ravigneaux gear set and five clutches. The follower shaft connects to the ring gear of the Ravigneaux set. Three of the clutches determine the gears that the base shaft connects to for power transfer. The other two clutches serve as brakes, grounding various gears of the Ravigneaux set to the transmission housing.

This diagram shows a four-speed Ravigneaux gear transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram.

Label	Component
R.G.	Ravigneaux gear
R	Ring gear
C	Planet gear carrier
SL	Large sun gear
SS	Small sun gear
A-C	Forward clutches that control the power flow path

Label	Component
D-E	Forward, braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
g_{1}=\frac{N_{R}}{N_{S L}}
$$

and

$$
g_{2}=\frac{N_{R}}{N_{S S}},
$$

where:

- N_{R} is the number of teeth in the Ravigneaux ring gear.
- $N_{\text {SL }}$ is the number of teeth in the Ravigneaux large sun gear.
- N_{SS} is the number of teeth in the Ravigneaux small sun gear.

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the power-flow diagrams for each gear of the 4-Speed Ravigneaux block.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The power-flow diagrams show the power flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Gear Clutch Schedule	Drive Ratio Equation	Default Ratio	Power Flow
A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D} \quad \mathbf{R}$			

Gear		tch	Sc	ed	ule	Drive Ratio Equation	Default Ratio	Power Flow
4	1	0	0	0		$\frac{g_{1}}{1+g_{1}}$	0.67	
3	1	1	0	0	0	1	1	
2	0	1	0	0	1	$\frac{g_{1}+g_{2}}{1+g_{1}}$	1.67	
1	0	1	0	1		g_{2}	3	
R	0		1			$-g_{1}$	-2	

Ports

Input

Gear - Numerical input for the gear

scalar
Specify -1 for reverse, 0 for neutral, and 1-4 for the forward gears.

Data Types: single | double

Conserving

B - Base interface
mechanical rotational
Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation

Neutral (default) | 4 | 3|2|1|Reverse
Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
10-Speed | 4-Speed CR-CR | 6-Speed Lepelletier | 7-Speed Lepelletier | 8-Speed | 9-Speed Introduced in R2015a

6-Speed Lepelletier

Clutch schedule for a six-speed Lepelletier transmission Library: Simscape / Driveline / Transmissions

Description

The 6-Speed Lepelletier consists of one planetary gear set, one Ravigneaux gear set, and five disk friction clutches. The transmission base shaft connects to the ring gear of the planetary gear set. The follower shaft connects to the ring gear of the Ravigneaux gear set. Three of the clutches control the power flow paths between the planetary and Ravigneaux gear sets. The other two clutches serve as brakes, grounding various gears of the Ravigneaux set to the transmission housing.

This diagram shows a six-speed Lepelletier transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram.

Label	Component
P.G.	Planetary gear
R.G.	Ravigneaux gear
R	Ring gear
C	Planet gear carrier

Label	Component
S	Sun gear
SL	Large sun gear
SS	Small sun gear
A-C	Forward clutches that control the power flow path
D-E	Forward, braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
\begin{aligned}
& g_{1}=\frac{N_{P R}}{N_{P S}} \\
& g_{2}=\frac{N_{R R}}{N_{R S L}}
\end{aligned}
$$

and

$$
g_{3}=\frac{N_{R R}}{N_{R S S}}
$$

where:

- N_{PR} is the number of teeth in the planetary ring gear.
- $N_{\text {PS }}$ is the number of teeth in the planetary sun gear.
- N_{RR} is the number of teeth in the Ravigneaux ring gear.
- $N_{\text {RSL }}$ is the number of teeth in the Ravigneaux large sun gear.
- $N_{\text {RRS }}$ is the number of teeth in the Ravigneaux small sun gear.

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the power-flow diagrams for each gear of the 6-Speed Lepelletier block.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The power-flow diagrams show the power flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Ports

Input

Gear - Numerical input for the gear

scalar
Specify -1 for reverse, 0 for neutral, and 1-6 for the forward gears.
Data Types: single | double

Conserving

B - Base interface

mechanical rotational
Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation
 Neutral (default)|6|5|4|3|2|1|Reverse

Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also
10-Speed | 4-Speed CR-CR | 4-Speed Ravigneaux | 7-Speed Lepelletier | 8-Speed | 9-Speed Introduced in R2015a

7-Speed Lepelletier

Clutch schedule for a seven-speed Lepelletier transmission Library: Simscape / Driveline / Transmissions

Description

The 7-Speed Lepelletier block consists of one planetary gear set, one Ravigneaux gear set, and six disk friction clutches. The transmission base shaft connects to the ring gear of the planetary gear set. The follower shaft connects to the ring gear of the Ravigneaux gear set. Three of the clutches control the power-flow paths between the planetary and Ravigneaux gear sets. The other three clutches serve as brakes, grounding various gears of the Ravigneaux set to the transmission housing.

This diagram shows a seven-speed Lepelletier transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram.

Label	Component
P.G.	Planetary gear
R.G.	Ravigneaux gear
R	Ring gear
C	Planet gear carrier

Label	Component
S	Sun gear
SL	Large sun gear
SS	Small sun gear
A-C	Forward clutches that control the power-flow path
D-F	Forward, braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
\begin{aligned}
& g_{1}=\frac{N_{P R}}{N_{P S}}, \\
& g_{2}=\frac{N_{R R}}{N_{R S L}},
\end{aligned}
$$

and

$$
g_{3}=\frac{N_{R R}}{N_{R S S}}
$$

where:

- N_{PR} is the number of teeth in the planetary ring gear.
- N_{PS} is the number of teeth in the planetary sun gear.
- N_{RR} is the number of teeth in the Ravigneaux ring gear.
- $N_{\text {RSL }}$ is the number of teeth in the Ravigneaux large sun gear.
- $N_{\text {RSS }}$ is the number of teeth in the Ravigneaux small sun gear.

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the power-flow diagrams for each gear of the 7-Speed Lepelletier block.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The power-flow diagrams show the power-flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Gear		Clu	tch	S	che	edul		Drive Ratio Equation	Default Ratio	Power Flow
7		B 1		$\begin{aligned} & \mathbf{C} \\ & 0 \end{aligned}$	$\begin{gathered} \mathbf{D} \\ 0 \end{gathered}$		F	$\frac{g_{2}}{1+g_{2}}$	0.70	
6							1	$\frac{g_{3}\left(1+g_{1}\right)}{g_{2}\left(1+g_{1}\right)+1}$	0.86	
5	1			1	0	0	0	1	1	
4	0	1						$\frac{g_{3}\left(1+g_{1}\right)}{g_{3}\left(1+g_{1}\right)-1}$	1.17	

Gear		Clutch	S	Sche	ed			Drive Ratio Equation	Default Ratio	Power Flow
3	1							$\frac{1+g_{1}}{g_{1}}$	1.63	
2	0	0						$\frac{\left(1+g_{1}\right)\left(g_{3}+g_{2}\right)}{g_{1}\left(1+g_{2}\right)}$	2.43	
1	0	0	1	1	0			$\frac{g_{3}\left(1+g_{1}\right)}{g_{1}}$	4.31	
R	1	0	0	1	0			$-\frac{g_{2}\left(1+g_{1}\right)}{g_{1}}$	-3.82	

Ports

Input

Gear - Numerical input for the gear

scalar
Specify -1 for reverse, 0 for neutral, and 1-7 for the forward gears.

Data Types: single|double

Conserving

B - Base interface

mechanical rotational
Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation

Neutral (default) | 7 | 6|5|4|3|2|1|Reverse
Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
10-Speed | 4-Speed CR-CR | 4-Speed Ravigneaux | 6-Speed Lepelletier | 8-Speed | 9-Speed Introduced in R2015a

8-Speed

Clutch schedule for an eight-speed transmission
Library: Simscape / Driveline / Transmissions

Description

The 8-Speed block consists of four planetary gear sets and five clutches. The base shaft connects to the:

- Planet gear carrier of the second planetary gear
- Other gears through three clutches that determine the power flow path.

The follower shaft connects to the planet gear carrier of the first and fourth planetary gears. The other two clutches serve as brakes, grounding various gears of planetary sets two and three to the transmission housing.

This diagram shows an eight-speed transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram.

Label	Component
P.G.1-P.G.4	Planetary gears, 1-4

Label	Component
R	Ring gear
C	Planet gear carrier
S	Sun gear
C-E	Forward clutches that control the power flow path
A-B	Forward, braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
g_{X}=\frac{N_{R_{X}}}{N_{S_{X}}}
$$

where:

- $N_{\mathrm{R}_{\mathrm{x}}}$ is the number of teeth in the planetary ring gear x , where $\mathrm{x}=1,2$, and 3 .
- $N_{\mathrm{S}_{\mathrm{x}}}$ is the number of teeth in the planetary sun gear x , where $\mathrm{x}=1,2$, and 3 .

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the power-flow diagrams for each gear of the 8-Speed block. The schedule and gear ratios are based on the manufacturer data for the GM 8L90 eight-speed automatic transmission.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The power-flow diagrams show the power flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Gear Clutch Schedule	Drive Ratio Equation	Default Ratio	Power Flow			
A	B	C	D	E		

Gear		lut	ch	Sch	e			Drive Ratio Equation	Default Ratio	Power Flow
8		10	0	0	1			$\frac{g_{2}}{1+g_{2}}$		
7		10	0	1	1			$\frac{g_{2}\left(1+g_{1}\right)}{1+g_{2}\left(1+g_{1}\right)}$	0.85	
6	0	0	0	1	1			1	1	
			1		1			$\frac{\left(1+g_{4}\right)\left(g_{2} g_{4}\right)}{\left.+g_{3}\right)\left(g_{2} g_{4}\right)(1+}$	1.26	

Ports

Input

Gear - Numerical input for the gear
 scalar

Specify -1 for reverse, 0 for neutral, and 1-8 for the forward gears.
Data Types: single | double

Conserving

B - Base interface

mechanical rotational
Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation

Neutral (default) | $8|7| 6|5| 4|3| 2|1|$ Reverse
Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also
10-Speed | 4-Speed CR-CR | 4-Speed Ravigneaux | 6-Speed Lepelletier | 7-Speed Lepelletier | 9-Speed
\section*{Introduced in R2015a}

9-Speed

Clutch schedule for a nine-speed transmission
Library: Simscape / Driveline / Transmissions

Description

The 9-Speed block consists of four planetary gear sets and six clutches. The follower shaft connects to the planet gear carrier of the fourth planetary gear. Three of the clutches determine the power flow path for the base shaft. The other three clutches serve as brakes, grounding various gears of the planetary sets to the transmission housing.

This diagram shows a nine-speed transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram.

Label	Component
P.G.1-P.G.4	Planetary gears, 1-4
R	Ring gear
C	Planet gear carrier

Label	Component
S	Sun gear
B, E, F	Forward clutches that control the power flow path
A, C, D	Forward, braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
g_{X}=\frac{N_{R_{X}}}{N_{S_{X}}}
$$

where:

- $N_{\mathrm{R}_{\mathrm{x}}}$ is the number of teeth in the planetary ring gear x , where $\mathrm{x}=1,2,3$, and 4 .
- $N_{\mathrm{S}_{\mathrm{x}}}$ is the number of teeth in the planetary sun gear x , where $\mathrm{x}=1,2,3$, and 4

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the plower-flow diagrams for each gear of the 9-Speed block. The schedule and gear ratios are based on the manufacturer data for the ZF 9HP nine-speed automatic transmission.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The plower-flow diagrams show the power flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Gear	Clutch Schedule		Drive Ratio Equation	Default Ratio	Power Flow				
	A	B	C	D	E	F			

Ports

Input

Gear - Numerical input for the gear
 scalar

Specify -1 for reverse, 0 for neutral, and 1-9 for the forward gears.

Data Types: single | double

Conserving

B - Base interface

mechanical rotational
Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation

Neutral (default)|9|8|7|6|5|4|3|2|1|Reverse

Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
10-Speed | 4-Speed CR-CR | 4-Speed Ravigneaux | 6-Speed Lepelletier | 7-Speed Lepelletier | 8-Speed
Introduced in R2015a

10-Speed

Clutch schedule for a 10 -speed transmission
Library: Simscape / Driveline / Transmissions

Description

The 10-Speed transmission block consists of four planetary gear sets and six clutches. The follower shaft connects to the planet gear carrier of the fourth planetary gear. Four of the clutches determine the power flow path for the base shaft. The other two clutches serve as brakes, grounding various gears of the planetary sets to the transmission housing.

This diagram shows a 10 -speed transmission. The labels for the gear components are superimposed on the input and output gears. The table lists the gear and clutch components that are labeled in the diagram. Power elements are shown in orange. Braking elements are shown in black.

Label	Component
PG1-PG4	Planetary gears, 1-4
R_{x}	Ring gear of planetary gear x

Label	Component
C_{x}	Planet gear carrier of planetary gear x
$\mathrm{~S}_{x}$	Sun gear of planetary gear x
C, D, E, F	Clutches that control the power flow path
A, B	Braking clutches

Drive Ratios, Clutch Schedule, and Power Flow

The drive ratio between the transmission input and output shafts follows from the elementary gear ratios specified for the gear blocks. The elementary gear ratios are

$$
g_{X}=\frac{N_{R_{X}}}{N_{S_{X}}},
$$

where:

- $N_{\mathrm{R}_{\mathrm{x}}}$ is the number of teeth in the planetary ring gear x, where $x=1,2,3$, and 4 .
- $N_{\mathrm{S}_{\mathrm{x}}}$ is the number of teeth in the planetary sun gear x, where $x=1,2,3$, and 4

The table shows the clutch schedule, drive-ratio expressions, drive-ratio default values, and the power-flow diagrams for each gear of the 10-Speed block. The schedule and gear ratios are based on the manufacturer data for a 10R80 10-speed automatic transmission.

The letters in the clutch schedule columns denote the brakes and clutches. A value of 1 denotes a locked state and a value of 0 an unlocked state. The clutch schedule generates these signals based on the Gear port input signal. The signals are scaled through a Gain block and used as actuation inputs in the clutch blocks.

The power-flow diagrams show the power flow paths between input and output shafts for each gear setting. Power flow is shown in orange. Connections to the transmission housing (a mechanical ground) are shown in black.

Gear	Clutch Schedule						Drive Ratio Equation	Default Ratio	Power Flow
	A	B	C	D	E	F			

Ports

Input

Gear - Numerical input for the gear

scalar
Specify -1 for reverse, 0 for neutral, and 1-10 for the forward gears.
Data Types: single | double

Conserving

B - Base interface

mechanical rotational

Conserving port associated with the base shaft.

F - Follower interface

mechanical rotational
Conserving port associated with the follower shaft.

Parameters

Initial gear - Gear state at the beginning of simulation
Neutral (default) | 10|9|8|7|6|5|4|3|2|1|Reverse
Sets the initial engagement or disengagement of the clutches using the clutch schedule. When the transmission is in neutral, there is no power flow from the base shaft to the follower shaft.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also
 4-Speed CR-CR | 4-Speed Ravigneaux | 6-Speed Lepelletier | 7-Speed Lepelletier | 8Speed | 9-Speed

Introduced in R2018a

Band Brake

Frictional brake with flexible band wrapped around rotating drum Library: \quad Simscape / Driveline / Brakes \& Detents / Rotational

Description

The Band Brake block represents a frictional brake with a flexible band that wraps around the periphery of a rotating drum to produce a braking action. A positive actuating force causes the band to tighten around the rotating drum and it places the friction surfaces in contact. Viscous and contact friction between the surfaces of the drum and the flexible band causes the rotating drum to decelerate.

You can model the effects of heat flow and temperature change for the block by using port \mathbf{H}, an optional thermal conserving port.

Band brakes provide high braking torque at the cost of reduced braking precision in applications that include winch drums, chainsaws, go-karts, and mini-bikes.

Equations

The model employs a simple parameterization with readily accessible brake geometry and friction parameters.

The braking torque as a function of the external brake actuation force that tightens the belt is

$$
T=\left(F_{T B}-F_{A}\right) \cdot r_{D}+\mu_{v i s c} \cdot \omega
$$

Where:

- T is the braking torque.
- $F_{T B}$ is the force acting on the tense branch of the band.
- F_{A} is the external brake actuation force.
- r_{D} is the drum radius.
- $\mu_{\text {visc }}$ is the viscous friction coefficient.
- μ is the contact friction coefficient.
- ϕ is the wrap angle.

Forces $F_{T B}$ and F_{A} satisfy the relationship

$$
\frac{F_{T B}}{F_{A}}=e^{\mu \phi}
$$

Replacing the relationship in the braking torque formula eliminates force $F_{T B}$ such that

$$
T=F_{A}\left(e^{\mu \phi}-1\right) \cdot r_{D}+\mu_{v i s c} \cdot \omega
$$

To avoid discontinuity at zero relative velocity, the model defines the actuation force, F_{S}, as a hyperbolic function

$$
F_{A}=F_{\text {in }} \cdot \tanh \left(\frac{4 \omega}{\omega_{\text {threshold }}}\right)
$$

Where:

- $F_{\text {in }}$ is the force input signal.
- $\omega_{\text {threshold }}$ is the angular velocity threshold.

Thermal Model

You can model the effects of heat flow and temperature change by exposing the optional thermal port. To expose the port, in the Friction settings, set the Thermal Port parameter to Model. Exposing the thermal port also exposes these related settings:

- Friction > Temperature
- Friction > Contact friction coefficient vector
- Thermal Port > Thermal mass
- Variables > Temperature

Variables

Use the Variables settings to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Dependencies

Variable settings are visible only when, in the Friction settings, the Thermal port parameter is set to Model.

Limitations and Assumptions

The model does not account for actuator flow consumption.

Ports

Input

F - Belt tensioning force

physical signal
Physical signal inport associated with the external tensioning force that is applied to the belt.

Conserving

S - Drum shaft rotation

rotational mechanical
Rotational conserving port associated with the rotating drum shaft.

H - Heat flow, in W

thermal
Thermal conserving port associated with heat flow.

Dependencies

This port is visible only when, in the Friction settings, the Thermal Port parameter is set to Model.

Exposing this port makes related settings visible.

Parameters

Geometry

Drum radius - Contact surface radius

150 mm (default) | positive scalar
Radius of the drum contact surface. The parameter must be greater than zero.

Wrap angle - Contact angle

270 deg (default) | positive scalar

Contact angle between the flexible belt and the rotating drum. The parameter must be greater than zero.

Friction

Viscous friction coefficient - Viscous friction

$.01 \mathrm{n} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default)| nonegative scalar

Viscous friction coefficient at the belt-drum contact surface. The parameter must be greater than or equal to zero.

Thermal port - Thermal model

Omit (default) | Model
Model for heat flow and temperature change:

- Omit - Neglect thermal dynamics.
- Model - Include thermal dynamics.

Dependencies

When this parameter is set to Model, the thermal port and related parameters and variables are visible.

Temperature - Temperature
 [280, 300, 320] K (default) | increasing vector

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Model.

Contact friction coefficient - Coulomb friction

0.3 (default) | positive scalar

Coulomb friction coefficient at the belt-drum contact surface. The value must be greater than zero.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Omit.

Contact friction coefficient vector - Coulomb friction

[.1, .05, .03] (default)| increasing vector of positive values
Coulomb friction coefficient at the belt-drum contact surface, such that:

- The number of elements in the vector must be the same as the number of elements in the specified vector for the Temperature parameter
- The values increase left to right.
- Each value must be greater than zero.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Model.

Angular velocity threshold - Rotational velocity required for near steadystate contact friction
 $0.01 \mathrm{rad} / \mathrm{s}$ (default) | positive scalar

Angular velocity at which the contact friction coefficient practically reaches its steadystate value. The value must be greater than zero.

Thermal Port

Thermal mass - Resistance to temperature change
 50 kJ/K (default) | scalar

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

Dependencies

This parameter is only visible when, in the Friction settings, the Thermal Port parameter is set to Model.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also
Double-Shoe Brake | Loaded-Contact Rotational Friction | Rotational Detent
\section*{Topics}
"Model Thermal Losses in Driveline Components"
Introduced in R2012b

Belt Drive

Power transmission system with taut belt connecting two pulleys Library: \quad Simscape / Driveline / Couplings \& Drives

Description

The Belt Drive block represents a pair of pulleys connected with a flexible ideal, flat, or Vshaped belt. The ideal belt does not slip relative to the pulley surfaces.

The model accounts for friction between the flexible belt and the pulley periphery. If the friction force is not sufficient to drive the load, the model allows slip. The relationship between the tensions in the tight and loose branches conforms to the Euler equation. The model accounts for centrifugal loading in the flexible belt, pulley inertia, and bearing friction.

The Belt Drive block is a structural component based on the Simscape Driveline Belt Pulley block and Simscape Translational Spring and Translational Damper blocks. The Translational Spring and Translational Damper blocks model the compliance of the belt. For the equations governing the contact dynamics between the belt and the pulley, see the Belt Pulley block. The figure shows the block diagram for the Belt Drive block.

Equations

The diagrams show the open and crossed belt drive configurations. In the open belt configuration, both pulleys tend to rotate in the same direction and the larger pulley has a larger belt wrap angle. In the crossed belt configuration, the pulleys tend to rotate in opposite directions and have the same wrap angle.

Belt Drive Diagrams

In the open configuration, the wrap angle of the belt around each pulley is given by the expressions:

$$
\begin{aligned}
& \theta_{A}=\Pi+2 * \sin ^{-1} \frac{R_{A}-R_{B}}{C} \\
& \theta_{B}=\Pi-2 * \sin ^{-1} \frac{R_{A}-R_{B}}{C}
\end{aligned}
$$

where:

- θ_{A} is the wrap angle of pulley A .
- θ_{B} is the wrap angle of pulley B.
- R_{A} is the effective radius of pulley A .
- R_{B} is the effective radius of pulley B.
- C is the distance between the centers of pulleys A and B.

The diagram shows the open-configuration wrap angles and parameters.

In the crossed configuration, the two wrap angles are equal and the wrap angle of the belt around each pulley is

$$
\theta_{A}=\theta_{B}=\Pi+2 * \sin ^{-1} \frac{R_{A}+R_{B}}{C}
$$

The diagram shows the closed-configuration wrap angles and parameters.

Assumptions and Limitations

- The pulleys do not translate.
- The friction coefficient and friction velocity threshold between the belt and each of the pulleys is the same.

Ports

Conserving

A - Pulley shaft A angular velocity mechanical rotational

Rotational conserving port associated with the shaft of pulley A.

B - Pulley shaft B angular velocity

mechanical rotational
Rotational conserving port associated with the shaft of pulley B.

Parameters

Belt

Drive type - Belt drive configuration

 Open belt (default)|Crossed beltBelt drive configuration. For more information, see "Belt Drive Diagrams" on page 1-51.

Belt type - Belt model

```
Ideal - No slip(default)|Flat belt|V-belt
```

Belt model:

- Ideal - No slip - Model an ideal belt, which does not slip relative to the pulley.
- Flat belt - Model a belt with a rectangular cross-section.
- V-belt-Model a belt with a V-shaped cross-section.

Dependencies

This parameter affects the visibility of related belt parameters and the Contact settings.

Compliance - Compliance model

No compliance - Suitable for HIL simulation (default)|Specify stiffness and damping

Compliance model.

- No compliance - Suitable for HIL simulation - Model a noncompliant belt, which does not yield elastically when subjected to a force. To prioritize performance, select this model.
- Specify stiffness and damping - Model a compliant belt, which does yield elastically when subjected to a force. To prioritize fidelity, select this model.

Dependencies

This parameter is visible only if Belt type is set to Ideal - No slip. This parameter affects the visibility of related belt parameters.

V-belt sheave angle - Sheave angle

30 deg (default) | nonneagative scalar
Sheave angle of the V-belt.

Dependencies

This parameter is visible only when Belt type is set to V-belt.

Number of V-belts - Number of belts

1 (default) | positive scalar integer

Number of V-belts.
Noninteger values are rounded to the nearest integer. Increasing the number of belts increases the friction force, effective mass per unit length, and maximum allowable tension.

Dependencies

This parameter is visible only when Belt type is set to V-belt.

Centrifugal force - Centrifugal force model
 Do not model centrifugal force - Suitable for HIL simulation (default)| Model centrifugal force

Centrifugal force model. If included, centrifugal force saturates to approximately 90 percent of the value of the force on each belt end.

Dependencies

This parameter is visible only if Belt type is set to Flat belt or V-belt. If this parameter is set to Model centrifugal force, the Belt mass per unit length parameter is exposed.

Belt mass per unit length - Mass per unit length

$0.6 \mathrm{~kg} / \mathrm{m}$ (default) | scalar

Centrifugal force contribution in terms of linear density expressed as mass per unit length.

Dependencies

Selecting Model centrifugal force for the Centrifugal force parameter exposes this parameter.

Longitudinal stiffness - Belt effective stiffness

le4 N/m (default) | nonneagative scalar
Effective stiffness of the belt.

Dependencies

This parameter not visible if Belt type is set to Ideal - No slip and Compliance is set to No compliance - Suitable for HIL simulation.

Longitudinal damping - Belt effective dampening

le3 N/(m/s) (default) | nonneagative scalar

Effective damping of the belt.

Dependencies

This parameter not visible if Belt type is set to Ideal - No slip and Compliance is set to No compliance - Suitable for HIL simulation.

Pre-tension - Resting belt tension
 100 N (default) | positive scalar

Tension in the belt when the belt and pulleys are at rest. The value must be positive.

Dependencies

This parameter not visible if Belt type is set to Ideal - No slip and Compliance is set to No compliance - Suitable for HIL simulation.

Maximum tension - Tension threshold model

No maximum tension (default)|Specify maximum tension
Tension threshold model. If Specify maximum tension is selected and the belt tension on either end of the belt meets or exceeds the value that you specify for Belt maximum tension, the simulation stops and generates an assertion error.

Dependencies

This parameter not visible if Belt type is set to Ideal - No slip and Compliance is set to No compliance - Suitable for HIL simulation.

For all three belt types, selecting Specify maximum tension exposes the Belt maximum tension parameter.

Belt maximum tension - Maximal tension threshold

 1e5 N (default) | positive scalarMaximum allowable tension for each belt. When the tension on either end of the belt meets or exceeds this value, the simulation stops and generates an assertion error.

Dependencies

This parameter not visible if Belt type is set to Ideal - No slip and Compliance is set to No compliance - Suitable for HIL simulation.

For all three belt types, the Belt maximum tension parameter is visible only when the Maximum tension parameter is set to Specify maximum tension.

Pulley A

Pulley radius - Pulley radius

. 15 m (default) | positive scalar

Radius of the pulley.

Bearing viscous friction coefficient - Bearing viscous friction $0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | scalar

Viscous friction associated with the bearings that hold the axis of the pulley.

Inertia - Rotational inertia model

No inertia (default) |Specify inertia and initial velocity
Rotational inertia model.

Dependencies

Selecting Specify inertia and initial velocity exposes the Pulley inertia and Pulley initial velocity parameters.

Pulley inertia - Pulley inertia

$0.01 \mathrm{~kg}{ }^{*} \mathrm{~m}^{\wedge} 2$ (default) | positive scalar
Rotational inertia of the pulley.

Dependencies

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

Pulley initial velocity - Initial pulley rotational velocity

 0 rad/s (default) | scalarInitial rotational velocity of the pulley.

Dependencies

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

Pulley B

Pulley radius - Pulley radius
.30 m (default) | positive scalar
Radius of the pulley.

Bearing viscous friction coefficient - Bearing viscous friction $0.001 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | scalar

Viscous friction associated with the bearings that hold the axis of the pulley.

```
Inertia - Rotational inertia model
No inertia (default)|Specify inertia and initial velocity
```

Specify inertia and initial velocity- To models rotational inertia. Exposes the Pulley inertia and Pulley initial velocity parameters.

Dependencies

Selecting Specify inertia and initial velocity exposes the Pulley inertia and Pulley initial velocity parameters.

Pulley inertia - Pulley inertia

$0.03 \mathrm{~kg} * \mathrm{~m}^{\wedge} 2$ (default) | positive scalar
Rotational inertia of the pulley.

Dependencies

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

Pulley initial velocity - Initial pulley rotational velocity 0 rad/s (default)| scalar

Initial rotational velocity of the pulley.

Dependencies

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

Contact

Contact friction coefficient - Contact friction

0.5 (default) | positive scalar

Coulomb friction coefficient between the belt and the pulley surface. Default is 0.5 .

Wrap angle calculation - Angle calculation model

Specify pulley center separation (default)|Specify wrap angles
Whether the block calculates the wrap angle of the belt on the pulleys using the pulley radii, center separation, and drive type or if the wrap angles are specified directly. Options are:

- Specify pulley center separation - The block calculates the wrap angle of the belt on the pulleys using the pulley radii, center separation, and drive type.

Exposes the Pulley center separation parameter.

- Specify wrap angles - The block uses the wrap angles that you specify.

Dependencies

Selecting Specify pulley center separation exposes the Pulley center separation parameter.

Selecting Specify wrap angles exposes the Pulley A wrap angle and Pulley B wrap angle parameters.

Pulley center separation - Pulley center separation distance

0.5 m (default) | positive scalar

Distance between the centers of the pulleys.

Dependencies

The Pulley center separation parameter is visible only when the Wrap angle calculation parameter is Specify pulley center separation.

Pulley A wrap angle - Pulley wrap angle

145 deg (default) | scalar
Angle of contact between the belt and pulley attached to port \mathbf{A}.

Dependencies

The Pulley A wrap angle parameter is visible only when the Wrap angle calculation parameter is Specify wrap angles.

Pulley B wrap angle - Pulley wrap angle

215 deg (default) | scalar

Angle of contact between the belt and pulley attached to port \mathbf{B}.
The Pulley B wrap angle parameter is visible only when the Wrap angle calculation parameter is Specify wrap angles.

Velocity threshold - Contact threshold

0.001 m/s (default) | positive scalar

Relative velocity required for peak kinetic friction in the contact. The friction velocity threshold improves the numerical stability of the simulation by ensuring that the force is continuous when the direction of the velocity changes.

More About

Hardware-in-the-Loop Simulation

For optimal simulation performance, set the Belt > Centrifugal force parameter to Do not model centrifugal force - Suitable for HIL simulation.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Belt Pulley | Chain Drive

Topics

"Best Practices for Modeling Pulley Networks"
"Rotational-Translational Couplings"

Introduced in R2012a

Belt Pulley

Power transmission element with frictional belt wrapped around pulley circumference Library: Simscape / Driveline / Couplings \& Drives

Description

The Belt Pulley block represents a pulley wrapped in a flexible ideal, flat, or V-shaped belt. The ideal belt does not slip relative to the pulley surface.

The model accounts for friction between the flexible belt and the pulley periphery. If the friction force is not sufficient to drive the load, the model allows slip. The relationship between the tensions in the tight and loose branches conforms to the Euler equation. The model accounts for centrifugal loading in the flexible belt, pulley inertia, and bearing friction.

The block allows you to select the relative belt direction of motion. The two belt ends can move in equal or opposite directions. The block model assumes noncompliance in the belt and no resistance to motion due to wrapping around the pulley.

The block equations model power transmission between the belt branches or to/from the pulley. The tight and loose branches use the same calculation. Without sufficient tension, the frictional force is not enough to transmit power between the pulley and belt.

The model is valid when both ends of the belt are in tension. An optional warning can display in the Simulink ${ }^{\circledR}$ Diagnostic Viewer when either belt end loses tension. When assembling a model, ensure that tension is maintained throughout the simulation. Consider this requirement when you interpret the simulation results.

Equations

If the relative velocity between the belt and pulley is positive or zero, that is $V_{\text {rel }} \geq 0$, the Belt Pulley block calculates friction force as

$$
F_{f r}=F_{B}-F_{C}=\left(F_{A}-F_{C}\right) * \exp (f * \theta)
$$

If the relative velocity is negative, that is $V_{r e l}<0$, the friction force is calculated as

$$
F_{f r}=F_{A}-F_{C}=\left(F_{B}-F_{C}\right) * \exp (f * \theta) .
$$

In both cases:

$$
\begin{aligned}
& V_{\text {rel }}=V_{A}-\omega_{S} * R \\
& F_{C}=\rho * V_{B}^{2} \\
& V_{A}=-V_{B}
\end{aligned}
$$

where:

- $V_{\text {rel }}$ is the relative velocity between the belt and pulley periphery.
- V_{A} is the branch A linear velocity.
- V_{B} is the branch B linear velocity.
- ω_{S} is the pulley angular velocity.
- R is the pulley radius.
- F_{C} is the belt centrifugal force.
- ρ is the belt linear density.
- $F_{f r}$ is the friction force between the pulley and the belt.
- F_{A} is the force acting along branch A.
- F_{B} is the force acting along branch B .
- f is the friction coefficient.
- θ is the contact wrap angle.

For a flat belt, specify the value of f directly in the block parameters dialog box. For a Vbelt, the model calculates the value as

$$
f^{\prime}=\frac{f}{\sin (\phi / 2)^{\prime}},
$$

where:

- f is the effective friction coefficient for a V-belt.
- Φ is the V-belt sheave angle.

The idealization of the discontinuity at $V_{\text {rel }}=0$ is both difficult for the solver to resolve and not physically accurate. To alleviate this issue, the friction coefficient is assumed to change its value as a function of the relative velocity such that

$$
\mu=-f * \tanh \left(4 * V_{r e l} / V_{t h r}\right)
$$

where

- μ is the instantaneous value of the friction coefficient.
- f is the steady-state value of the friction coefficient.
- $V_{t h r}$ is the friction velocity threshold.

The friction velocity threshold controls the width of the region within which the friction coefficient changes its value from zero to a steady-state maximum. The friction velocity threshold specifies the velocity at which the hyperbolic tangent equals 0.999 . The smaller the value, the steeper is the change of μ.

This friction force is calculated as

$$
F_{f r}=F_{A}-F_{C}=\left(F_{B}-F_{C}\right) * \exp (\mu * \theta)
$$

The resulting torque on the pulley is given as

$$
T_{S}=\left(F_{A}+F_{B}\right) * R * \tanh \left(4 \frac{V_{\mathrm{rel}}}{V_{\mathrm{thr}}}\right) * \tanh \left(\frac{F_{B}}{F_{\mathrm{thr}}}\right)-\omega_{S} * b
$$

where:

- T_{S} is the pulley torque.
- b is the bearing viscous damping.
- $F_{t h r}$ is the force threshold.

Assumptions and Limitations

- The model does not account for compliance along the length of the belt.
- Both belt ends maintain adequate tension throughout the simulation.

Ports

The sign convention is such that, when Belt direction is set to Ends move in opposite direction, a positive rotation in port \mathbf{S} tends to give a negative translation for port \mathbf{A} and a positive translation for port \mathbf{B}.

Conserving

S - Pulley shaft angular velocity

mechanical rotational
Rotational conserving port associated with the pulley shaft.

A - Belt end A linear velocity
 mechanical translational

Translational conserving port associated with belt end A.

B - Belt end B linear velocity

mechanical translational
Translational conserving port associated with belt end B.

Parameters

Belt

Belt type - Belt model

Ideal - No slip (default)|Flat belt|V-belt
Belt model:

- Ideal - No slip - Model an ideal belt, which does not slip relative to the pulley.
- Flat belt - Model a belt with a rectangular cross-section.
- V-belt-Model a belt with a V-shaped cross-section.

Dependencies

This parameter affects the visibility of related belt parameters and the Contact settings.

V-belt sheave angle - Sheave angle

30 deg (default) | positive scalar
Sheave angle of the V-belt.

Dependencies

This parameter is visible only when Belt type is set to V-belt.

Number of V-belts - Number of belts

1 (default) | positive scalar integer
Number of V-belts.
Noninteger values are rounded to the nearest integer. Increasing the number of belts increases the friction force, effective mass per unit length, and maximum allowable tension.

Dependencies

This parameter is visible only when Belt type is set to V-belt.

Centrifugal force - Centrifugal force model

Do not model centrifugal force - Suitable for HIL simulation (default)| Model centrifugal force

Option to include the effects of centrifugal force. If included, centrifugal force saturates to approximately 90 percent of the value of the force on each belt end.

Dependencies

This parameter is visible only when Belt type is set to Flat belt or V-belt.
If this parameter is set to Model centrifugal force, the Belt mass per unit length parameter is exposed.

Belt mass per unit length - Mass per unit length

 0.6 kg/m (default) | positive scalarCentrifugal force contribution in terms of linear density expressed as mass per unit length.

Dependencies

Selecting Model centrifugal force for the Centrifugal force parameter exposes this parameter.

Belt direction - Initial belt end relative motion direction

Ends move in opposite direction (default)|Ends move in same direction
Relative direction of translational motion of one belt end with respect to the other.

Dependencies

This parameter is visible only when Belt type is set to Flat belt or V-belt.

Maximum tension - Tension threshold model

No maximum tension (default)|Specify maximum tension
Tension threshold model. If Specify maximum tension is selected and the belt tension on either end of the belt meets or exceeds the value that you specify for Belt maximum tension, the simulation stops and generates an assertion error.

Dependencies

Selecting Specify maximum tension exposes the Belt maximum tension parameter.

Belt maximum tension - Maximal tension threshold

le5 N (default) | positive scalar

Maximum allowable tension for each belt. When the tension on either end of the belt meets or exceeds this value, the simulation stops and generates an assertion error.

The Belt maximum tension parameter is visible only when the Maximum tension parameter is set to Specify maximum tension.

Tension warning - Slack threshold reporting

Do not check tension (default)|Warn if either end loses tension
Whether the block generates a warning when the tension at either end of the belt falls below zero.

Pulley

Pulley radius - Pulley radius

. 15 m (default) | positive scalar

Radius of the pulley.

Bearing viscous friction coefficient - Bearing viscous friction

 $0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | scalarViscous friction associated with the bearings that hold the axis of the pulley.

Inertia - Rotational inertia model

No inertia (default) |Specify inertia and initial velocity
Rotational inertia model.

Dependencies

Selecting Specify inertia and initial velocity exposes the Pulley inertia and Pulley initial velocity parameters.

Pulley inertia - Pulley inertia

$0.01 \mathrm{~kg} * \mathrm{~m}^{\wedge} 2$ (default) | positive scalar

Rotational inertia of the pulley.

Dependencies

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

Pulley initial velocity - Initial pulley rotational velocity

 0 rad/s (default) | scalarInitial rotational velocity of the pulley.

Dependencies

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

Contact

Contact settings are only visible if the Belt type parameter in the Belt settings is set to Flat belt or V-belt

Contact friction coefficient - Friction coefficient

0.5 (default) | positive scalar

Coulomb friction coefficient between the belt and the pulley surface.

Wrap angle - Belt-to-pulley contact angle

180 deg (default) | positive scalar

Radial contact angle between the belt and the pulley.

Velocity threshold - Velocity threshold

0.001 n/s (default) | positive scalar

Relative velocity required for peak kinetic friction in the contact. The friction velocity threshold improves the numerical stability of the simulation by ensuring that the force is continuous when the direction of the velocity changes.

More About

Hardware-in-the-Loop Simulation

For optimal simulation performance, set the Belt > Centrifugal force parameter to Do not model centrifugal force - Suitable for HIL simulation.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Belt Drive | Rope Drum | Wheel and Axle

Topics

"Best Practices for Modeling Pulley Networks"
"Rotational-Translational Couplings"
Introduced in R2012a

Chain Drive

Power transmission system with chain and two sprockets
Library: \quad Simscape / Driveline / Couplings \& Drives

Description

The Chain Drive block represents a power transmission system with a chain and two sprockets. The chain meshes with the sprockets, transmitting rotary motion between the two. Power transmission can occur in reverse, that is, from driven to driver sprocket, due to external loads. This condition is known as back-driving.

The drive chain is compliant. It can stretch under tension or slacken if loose. The compliance model consists of a linear spring-damper set in a parallel arrangement. The spring resists tensile strain in the chain. The damper resists tensile motion between chain elements.

The spring and damper forces act directly on the sprockets that the chain connects. The spring force is present when one chain branch is taut. The damper force is present continuously. To represent and report a failure condition, the simulation stops and generates an error if the net tensile force in the chain exceeds the specified maximum tension value.

The block accounts for viscous friction at the sprocket joint bearings. During motion, viscous friction causes power transmission losses, reducing chain-drive efficiency. These
losses compound due to chain damping. To eliminate power transmission losses in the chain drive, in the Dynamic settings, set the parameters for viscous friction and chain damping to zero.

The tensile strain rate in the chain is the difference between the sprocket tangential velocities, which are each the product of the angular velocity and pitch radii. Mathematically,

$$
\dot{x}=\omega_{A} R_{A}-\omega_{B} R_{B},
$$

where:

- x is the tensile strain.
- ω_{A}, ω_{B} are the sprocket angular velocities.
- R_{A}, R_{B} are the sprocket pitch radii.

The figure shows the relevant variables.

The chain tensile force is the net sum of the spring and damper forces. The spring force is the product of the tensile strain and the spring stiffness constant. This force is zero when the tensile strain is smaller than the chain slack. The damper force is the product of the tensile strain rate and the damping coefficient. Mathematically,

$$
F=\left\{\begin{array}{cc}
-\left(x-\frac{S}{2}\right) k-\dot{x} b, & x>\frac{S}{2} \\
-\dot{x} b, \quad \frac{S}{2} \geq x \geq-\frac{S}{2} \\
-\left(x+\frac{S}{2}\right) k-\dot{x} b, & x<-\frac{S}{2}
\end{array}\right.
$$

where:

- S is the chain slack.
- k is the spring stiffness constant.
- b is the damper coefficient.

The chain exerts a torque on each sprocket equal to the product of the tensile force and the sprocket pitch radius. The two torques act in opposite directions according to the equations

$$
T_{A}=-F \cdot R_{A}
$$

and

$$
T_{B}=F \cdot R_{B},
$$

where:

- T_{A} is the torque that the chain applies on sprocket A.
- T_{B} is the torque that the chain applies on sprocket B.

Variables

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

Assumptions and Limitations

- The sprocket tooth ratio equals the sprocket pitch radius ratio.
- Chain inertia is negligible.

Ports

Conserving

A - Sprocket A

mechanical rotational
Conserving rotational port associated with sprocket A.

B - Sprocket B

mechanical rotational
Conserving rotational port associated with sprocket B.

Parameters

Geometry

Sprocket A pitch radius - Sprocket A pitch radius

80 mm (default) | scalar
Radius of the pitch circle for sprocket A. The pitch circle is an imaginary circle passing through the contact point between a chain roller and a sprocket cog at full engagement.

Sprocket B pitch radius - Sprocket A pitch radius

40 mm (default) | scalar
Radius of the pitch circle for sprocket B. The pitch circle is an imaginary circle passing through the contact point between a chain roller and a sprocket cog at full engagement.

Chain slack length - Maximum slack length
 50 mm (default) | scalar

Maximum distance the loose branch of the drive chain can move before it is taut. This distance equals the length difference between actual and fully taut drive chains.

If one sprocket is held in place while the top chain branch is taut, then the slack length is the tangential distance that the second sprocket must rotate before the lower chain branch becomes taut.

Dynamics

Chain stiffness - Linear spring constant 1e5 N/m (default) | scalar

Linear spring constant in the chain compliance model. This constant describes the chain resistance to strain. The spring element accounts for elastic energy storage in the chain due to deformation.

Chain damping - Linear damping coefficient
 $5 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$ (default) | scalar

Linear damping coefficient in the chain compliance model. This coefficient describes the resistance to tensile motion between adjacent elements in the chain. The damper element accounts for power losses in the chain due to deformation.

Viscous friction coefficient of sprocket A-Sprocket A friction $0.001 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default)

Friction coefficient due to the rolling action of the joint bearing for sprocket A in the presence of a viscous lubricant.

Viscous friction coefficient of sprocket B - Sprocket B friction $0.001 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default)

Friction coefficient due to the rolling action of the joint bearing for sprocket B in the presence of a viscous lubricant.

Maximum Tension

Maximum tension - Tension limit model

No maximum tension (default)|Specify maximum tension
Select whether to constrain the maximum tensile force in the drive chain.

- No maximum tension - Chain tension can be arbitrarily large during simulation.
- Specify maximum tension - Chain tension must remain lower than a maximum value. If the tension exceeds this value, the simulation generates an error and stops.

Dependencies

Selecting Specify maximum tension exposes the Chain maximum tension parameter.

Chain maximum tension - Upper tension limit le6 N (default)

Maximum allowed value of the tensile force acting in the chain.

Dependencies

Selecting Specify maximum tension for the Maximum tension parameter exposes this parameter.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also

Simple Gear | Variable Ratio Transmission

Topics

"Gear Coupling Control Using Clutches"

Introduced in R2012a

Compound Planetary Gear

Planetary gear train with stepped planet gear set Library: Simscape / Driveline / Gears

Description

The Compound Planetary Gear block represents a planetary gear train with composite planet gears. Each composite planet gear is a pair of rigidly connected and longitudinally arranged gears of different radii. One of the two gears engages the centrally located sun gear while the other engages the outer ring gear.

Compound Planetary Gear

The block models the compound planetary gear as a structural component based on the Simscape Driveline Sun-Planet and Ring-Planet blocks. The figure shows the block diagram of this structural component.

To increase the fidelity of the gear model, specify properties such as gear inertia, meshing losses, and viscous losses. By default, gear inertia and viscous losses are assumed to be negligible. The block enables you to specify the inertias of the internal planet gears only. To model the inertias of the carrier, sun, and ring gears, connect Simscape Inertia blocks to ports \mathbf{C}, \mathbf{S}, and \mathbf{R}.

Thermal Modeling

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a model variant that includes a thermal port. Specify the associated thermal parameters for the component.

Equations

Ideal Gear Constraints and Gear Ratios

The Compound Planetary Gear block imposes two kinematic and two geometric constraints on the three connected axes and the fourth, internal wheel (planet):

$$
\begin{align*}
& r_{\mathrm{C}} \omega_{\mathrm{C}}=r_{\mathrm{S}} \omega_{\mathrm{S}}+r_{\mathrm{P} 1} \omega_{\mathrm{P}}, r_{\mathrm{C}}=r_{\mathrm{S}}+r_{\mathrm{P} 1}, \tag{1-1}\\
& r_{\mathrm{R}} \omega_{\mathrm{R}}=r_{\mathrm{C}} \omega_{\mathrm{C}}+r_{\mathrm{P} 2} \omega_{\mathrm{P}}, r_{\mathrm{R}}=r_{\mathrm{C}}+r_{\mathrm{P} 2} . \tag{1-2}
\end{align*}
$$

The ring-planet gear ratio is $g_{\mathrm{RP}}=r_{\mathrm{R}} / r_{\mathrm{P} 2}=N_{\mathrm{R}} / N_{\mathrm{P} 2}$ and the planet-sun gear ratio is $g_{\mathrm{PS}}=$ $r_{\mathrm{P} 1} / r_{\mathrm{S}}=N_{\mathrm{P} 1} / N_{\mathrm{S}} . N$ is the number of teeth on each gear. In terms of these ratios, the key kinematic constraint is:
$\left(1+g_{\mathrm{RP}} \cdot g_{\mathrm{PS}}\right) \omega_{\mathrm{C}}=\omega_{\mathrm{S}}+g_{\mathrm{RP}} \cdot g_{\mathrm{PS}} \omega_{\mathrm{R}}$.
The four degrees of freedom reduce to two independent degrees of freedom. The gear pairs are $(1,2)=(P 2, R)$ and (S,P1).

Warning The gear ratio g_{RP} must be strictly greater than one.

The torque transfers are:
$g_{\mathrm{RP}} \tau_{\mathrm{P} 2}+\tau_{\mathrm{R}}-\tau_{\text {loss }}(\mathrm{P} 2, \mathrm{R})=0, g_{\mathrm{PS}} \tau_{\mathrm{S}}+\tau_{\mathrm{P} 1}-\tau_{\text {loss }}(\mathrm{S}, \mathrm{P} 1)=0$,
with $\tau_{\text {loss }}=0$ in the ideal case .

Nonideal Gear Constraints and Losses

In the nonideal case, $\tau_{\text {loss }} \neq 0$. See "Model Gears with Losses".

Limitations and Assumptions

- Gears are assumed rigid.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

Ports

Conserving

C - Planet gear carrier

rotational mechanical
Rotational conserving port associated with the planet gear carrier.

R - Ring gear

rotational mechanical

Rotational conserving port associated with the ring gear.

S - Sun gear

rotational mechanical
Rotational conserving port associated with the sun gear.

H - Heat flow

thermal
Thermal conserving port associated with heat flow.

Dependencies

This port is visible only when Block choices is set to Show thermal port.
Exposing this port makes related parameters visible.

Parameters

Main

```
Ring (R) to planet (P) teeth ratio (NR/NP) - Ring to planet gear teeth
ratio
2 (default) | scalar integer > 1
```

Fixed ratio, $g_{R P}$, of the ring gear to the planet gear. The gear ratio must be strictly greater than 1.

```
Planet (P) to sun (S) teeth ratio (NP/NS) - Planet to sun gear teeth ratio
1 (default) | scalar integer > 0
```

Fixed ratio, $g_{P S}$, of the planet gear to the sun gear. The gear ratio must be strictly positive.

Meshing Losses

The parameters that are visible in the Meshing Losses settings depend on the thermal and friction models that you choose for the block. For more information, see "Thermal Modeling" on page 1-77 and "Friction model" on page 1-0

Friction model - Friction model
 No meshing losses - Suitable for HIL simulation (default)|Constant efficiency

Friction model for the block:

- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency, η, such that $0<\eta \leq 1$.

Dependencies

This parameter is visible only if Block choices is set to No thermal port.
Selecting Constant efficiency makes related parameters visible.

Sun-planet and ring-planet ordinary efficiencies - Torque transfer efficiencies
 [.96, .98] (default) | vector

Vector of torque transfer efficiencies, $\left[\eta_{S P} \eta_{R P}\right]$, for sun-planet and ring-carrier gear wheel pair meshings, respectively.

Dependencies

This parameter is visible only if Block choices is set to No thermal port and the Friction model parameter is set to Constant efficiency.

Sun-carrier and planet-carrier power thresholds - Full efficiency power thresholds

[.001, .001] W (default) | array
Array of power thresholds, $p_{t h}$, above which full efficiency factors apply, for the suncarrier and planet-carrier, respectively. Below these values, a hyperbolic tangent function smooths the efficiency factor. For a model without thermal losses, the function lowers the efficiency losses to zero when no power is transmitted. For a model that considers thermal losses, the function smooths the efficiency factors between zero at rest and the values provided by the temperature-efficiency lookup tables at the power thresholds.

Dependencies

This parameter not visible only if the Friction model parameter is set to No meshing losses - Suitable for HIL simulation.

Temperature - Temperature

[280, 300, 320]K (default) | array of increasing values
Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase from left to right. The temperature array must be the same size as each efficiency array.

Dependencies

This parameter is visible only if Block choices is set to Thermal port.

Sun-planet efficiency - Sun-planet efficiency

```
[.95, .9, . 85] (default)| array
```

Array of mechanical efficiencies with power flowing from the sun gear to the planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size.

Dependencies

This parameter is visible only if Block choices is set to Thermal port.

```
Ring-planet efficiency - Ring-planet efficiency
[.95, .9, .85] (default) | array
```

Array of mechanical efficiencies with power flowing from the ring gear to the planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size.

Dependencies

This parameter is visible only if Block choices is set to Thermal port.

Viscous Losses

Sun-carrier and planet-carrier viscous friction coefficients - Gear viscous friction

[0, 0] N*m/(rad/s) (default) | array

Array of viscous friction coefficients, $\left[\mu_{s}, \mu_{P}\right.$], for the sun-carrier and planet-carrier gear motions, respectively.

Inertia

Planet gear inertia - Planet gear inertia

$0 \mathrm{~kg} * \mathrm{~m} \wedge 2$ (default) | nonneagative scalar
Moment of inertia of the combined planet gears. This value must be positive or zero. To ignore gear inertia, specify 0 .

Thermal Port

Thermal mass - Thermal mass

50 J/K (default) | scalar
Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

Dependencies

This parameter is visible only if Block choices is set to Thermal port.

Initial temperature - Initial temperature
 300 K (default) | scalar

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses.

Dependencies

This parameter is visible only if Block choices is set to Thermal port.

More About

Hardware-in-the-Loop Simulation

For optimal simulation performance, in the Meshing Losses settings, set the Friction model parameter to the default value, No meshing losses - Suitable for HIL simulation.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

Simscape Blocks
Planetary Gear | Ravigneaux Gear | Ring-Planet | Sun-Planet

Topics

"Basic Motion, Torque, and Force Modeling"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

Introduced in R2011a

Cone Clutch

Friction clutch with conical plates that engage when normal force exceeds threshold Library: Simscape / Driveline / Clutches

Description

The Cone Clutch block represents a friction clutch with a conical contact interface. The conical interface reduces the normal force required for clutch engagement by creating a wedging action between the clutch components, a cone and a cup. Cone clutch applications include synchromesh gearboxes, which synchronize the drive and driven shaft speeds to enable smoother engagement between transmission gears.

The cup component connects rigidly to the drive shaft, spinning with it as a unit. The cone component connects rigidly to the driven shaft, which sits in axial alignment with the drive shaft. The clutch engages when the cone slides toward the cup and presses tightly against its internal surface. Friction at the cone-cup contact interface enables the clutch to transmit rotational power between the drive and driven shafts. The friction model of this block includes both static and kinetic friction contributions, the latter of which leads to power dissipation during slip between the cone and cup components.

The Cone Clutch block is based on the Fundamental Friction Clutch block. For the complete friction clutch model, see Fundamental Friction Clutch. This section discusses the specialized model implemented in the Cone Clutch block.

When you apply a normal force, F_{N}, the Cone Clutch block can apply two kinds of friction, kinetic and static, to the driveline motion. The clutch applies kinetic friction torque only when one driveline axis is spinning relative to the other driveline axis. The clutch applies static friction torque when the two driveline axes lock and spin together. The block iterates through multistep testing to determine when to lock and unlock the clutch.

Clutch Geometry and Variables

The figure shows the cone clutch geometry.

Clutch Variables

Parameter	Definition	Significance
d_{o}	Outer diameter of the conical contact surface	See the preceding figure
d_{i}	Inner diameter of the conical contact surface	See the preceding figure
α	Cone half angle	See the preceding figure
ω	Relative angular velocity (slip)	$\omega_{\mathrm{F}}-\omega_{\mathrm{B}}$
$\omega_{\text {Tol }}$	Slip tolerance for clutch locking	See the following model
F_{N}	Normal force applied to conical surfaces	Normal force applied, if greater than threshold: $F_{\mathrm{N}}>F_{\text {th }}$
α	Cone half-angle	See the preceding figure
r_{eff}	Effective torque radius	Effective moment arm of clutch friction force
k_{K}	Kinetic friction coefficient	Dimensionless coefficient of kinetic friction of conical friction surfaces. Function of ω.
k_{S}	Static friction coefficient	Dimensionless coefficient of static friction of conical friction surfaces.
τ_{K}	Kinetic friction torque	See the following model
τ_{S}	Static friction torque limit	(static friction peak factor)•(kinetic friction torque for $\omega \rightarrow 0)$ (See the following model)

Relation to Fundamental Friction Clutch

The Cone Clutch block is based on the Fundamental Friction Clutch block. Instead of requiring the kinetic and static friction limit torques as input signals, the Cone Clutch block calculates the kinetic and static friction from the clutch parameters and the input normal force signal F_{N}.

Kinetic Friction

The kinetic friction torque is the product of four factors:

$$
\tau_{K}=k_{K} \cdot F_{N} \cdot r_{e f f} \cdot \operatorname{sgn}(\omega)
$$

The kinetic friction torque opposes the relative slip and is applied with an overall minus sign. It changes sign when ω changes sign.

You specify the kinetic friction coefficient, k_{K}, as either a constant or a tabulated discrete function of relative angular velocity, ω. The tabulated function is assumed to be symmetric for positive and negative values of the relative angular velocity. Therefore, specify k_{K} for positive values of ω only.

The effective torque radius, $r_{\text {eff }}$, is the effective radius, measured from the driveline axis, at which the kinetic friction forces are applied at the frictional surfaces. It is related to the geometry of the conical friction surface geometry by:

$$
r_{\mathrm{eff}}=\frac{1}{3 \sin \alpha} \frac{d_{o}^{3}-d_{i}{ }^{3}}{d_{o}^{2}-d_{i}^{2}}
$$

d_{o} and d_{i} are the contact surface maximum and minimum diameters, respectively.

Static Friction

The static friction limit is related to the kinetic friction, setting ω to zero and replacing the kinetic with the static friction coefficient:

$$
T_{S}=k_{S} \cdot F_{N} \cdot r_{e f f} \geq 0
$$

$k_{\mathrm{S}}>k_{\mathrm{K}}$, so that the torque, τ, needed across the clutch to unlock it by overcoming static friction is larger than the kinetic friction at the instant of unlocking, when $\omega=0$.

The static friction limit defines symmetric static friction torque limits as:

$$
\tau_{S} \equiv \tau_{S}+=-\tau_{S^{-}}
$$

The range $\left[\tau_{\mathrm{s}}{ }^{-}, \tau_{\mathrm{S}}{ }^{+}\right.$] is used by the Fundamental Friction Clutch.

Engagement and Locking Conditions

The clutch engages (transmits torque) when the conical friction surfaces are subject to a positive normal force and generate kinetic friction: $F_{\mathrm{N}}>0$ and $\tau_{K}>0$.

The clutch locks if and only if it is engaged, and the slip is less than the velocity tolerance: $|\omega|<\omega_{\text {Tol }}$.

Power Dissipated by the Clutch

The power dissipated by the clutch is $\left|\omega \cdot \tau_{K}\right|$. The clutch dissipates power only if it is both slipping $(\omega \neq 0)$ and applying kinetic friction ($\tau_{K}>0$).

Velocity-Dependent Model

You can model the effects of rotational velocity change by selecting a velocity-dependent model. To choose a velocity-dependent model, in the Friction settings, set the Friction model parameter to Velocity-dependent kinetic friction coefficient. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-89.

For the velocity-dependent model these related parameters become visible in the Friction settings:

- Relative velocity vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method

Thermal Model

You can model the effects of heat flow and temperature change by selecting a temperature-dependent model. To choose a temperature-dependent model, in the Friction settings, set the Friction model parameter to Temperature-dependent friction coefficients. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-89.

For the temperature-dependent model, thermal port \mathbf{H} and these settings are visible:

- In the Friction settings:
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

Thermal, Velocity-Dependent Model

You can model the effects of rotational velocity change and heat flow by selecting a velocity-dependent and temperature-dependent model. To choose a model that depends on both velocity and temperature, in the Friction settings, set the Friction model parameter to Temperature and velocity-dependent friction coefficients.

For the velocity-dependent and temperature-dependent model, thermal port \mathbf{H} and these related settings and parameters become visible:

- In the Friction settings:
- Relative velocity vector
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient matrix
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

Ports

Input

N - Normal force

physical signal
Physical signal port associated with the normal force. This signal is positive or zero. A signal of less than zero is interpreted as zero.

Dependencies

This port is visible only if, in the Geometry settings, the Shift linkage control parameter is set to Physical signal. For more information, see "Shift linkage control" on page 1-0 and Geometry Parameter Dependencies.

Output

X - Shift linkage position

physical signal

Physical signal port associated with shift linkage position.

Dependencies

This port is visible only when, in the Geometry settings, the Shift linkage control parameter is set to Conserving port. For more information, see "Shift linkage control" on page 1-0 and Geometry Parameter Dependencies.

Conserving

B - Base

mechanical rotational
Mechanical rotational conserving port associated with the driving (base) shaft. The clutch motion is measured as the slip $\omega=\omega_{F^{-}}-\omega_{B}$, the angular velocity of follower relative to base.

F - Follower

mechanical rotational
Mechanical rotational conserving port associated with the driven or follower shaft

H - Heat flow

thermal
Thermal conserving port associated with heat flow.

Dependencies

This port is visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and
velocity-dependent friction coefficients. For more information, see "Friction model" on page 1-0 and Friction Parameter Dependencies.

S - Shift linkage
 mechanical rotational

Mechanical rotational conserving port associated with shift linkage.

Dependencies

This port is visible only when, in the Geometry settings, the Shift linkage control parameter is set to Conserving port. For more information, see "Shift linkage control" on page 1-0 and Geometry Parameter Dependencies.

Parameters

Geometry

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Geometry Parameter Dependencies

Geometry	
Contact surface maximum diameter	
Contact surface minimum diameter	
Cone half angle	
Shift linkage control	Conserving port
Physical signal	 Exposes physical signal input port \mathbf{N} Exposes: • Conserving port S • Shysical signal output port \mathbf{X}

Contact surface maximum diameter - Outer diameter
150 mm (default) | positive scalar

Outer conical diameter d_{0}.

Contact surface minimum diameter - Inner diameter

 100 mm (default) | positive scalarInner conical diameter d_{i}.

Cone half angle - Cone half angle

12 deg (default) | positive scalar
Half opening angle α of the cone geometry.

Shift linkage control - Shift linkage model

Physical signal (default)|Conserving port
Shift linkage control model:

- Physical signal - Expose physical signal ports N, which inputs the normal force, and \mathbf{X}, which outputs for the shift linkage travel.
- Conserving port - Expose conserving port, S, which is associated with shift linkage control.

Dependencies

The visibility of Shift Linkage settings and ports \mathbf{S}, \mathbf{X}, and \mathbf{N} depend on this setting. For more information, see Geometry Parameter Dependencies.

Shift Linkage

These settings are visible only if, in the Geometry settings, the Shift linkage control parameter is set to Conserving port. For more information, see "Shift linkage control" on page 1-0 and Geometry Parameter Dependencies.

Hard stop at back of shift linkage - Hard stop On (default) | Off

Hard stop at back of shift linkage

Ring-hub clearance when disengaged - Ring-hub clearance 3 mm (default) | nonnegative scalar

Ring-hub clearance when disengaged

Ring stop stiffness - Ring stop stiffness

10e5 N/m (default) | nonnegative scalar
Ring stops stiffness

Ring stop damping - Ring stop damping

le3 N/(m/s) (default) | nonnegative scalar
Ring stop damping

Shift linkage viscous friction coefficient - Shift linkage viscous friction 100 N/(m/s) (default) | positive scalar

Shift linkage viscous friction coefficient

Linkage travel direction - Disengagement travel direction
 Positive shift linkage displacement engages clutch (default)|Negative shift linkage displacement engages clutch

Linkage travel direction that disengages the clutch

Friction

The table shows how the visibility of some ports, parameters, and settings depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Friction Parameter Dependencies

Friction			
Friction model			
Fixed kinetic friction coeffici ent	Velocity-dependent kinetic friction coefficient	Temperaturedependent friction coefficients	Temperature and velocity-dependent friction coefficients
		Exposes: - Conserving port H - Thermal parameters in the Friction settings - Thermal Port settings	Exposes: - Conserving port \mathbf{H} - Thermal parameters in the Friction settings - Thermal Port settings
-		Temperature vector	Temperature vector
-	Relative velocity vector	-	Relative velocity vector
Static friction coefficien t	Static friction coefficient	Static friction coefficient vector	Static friction coefficient vector
Kinetic friction coefficien t	Kinetic friction coefficient vector	Kinetic friction coefficient vector	Kinetic friction coefficient matrix
-	Friction coefficient interpolation method	Friction coefficient interpolation method	Friction coefficient interpolation method
-	Friction coefficient extrapolation method	Friction coefficient extrapolation method	Friction coefficient extrapolation method
Velocity tolerance	Velocity tolerance	Velocity tolerance	Velocity tolerance
Threshold force	Threshold force	Threshold force	Threshold force

Friction			
Viscous drag torque coefficien t	Viscous drag torque coefficient	Viscous drag torque coefficient	Viscous drag torque coefficient

Friction model - Friction model

Fixed kinetic friction coefficient (default)|Velocity-dependent kinetic friction coefficient|Temperature-dependent friction coefficients| Temperature and velocity-dependent friction coefficients

Parameterization method to model the kinetic friction coefficient. The options and default values for this parameter depend on the friction model that you select for the block. The options are:

- Fixed kinetic friction coefficient - Provide a fixed value for the kinetic friction coefficient.
- Velocity-dependent kinetic friction coefficient - Define the kinetic friction coefficient by one-dimensional table lookup based on the relative angular velocity between disks.
- Temperature-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature.
- Temperature and velocity-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature and the relative angular velocity between disks.

Dependencies

The friction model setting affects the visibility of other parameters, settings, and ports. For more information, see Friction Parameter Dependencies.

Relative velocity vector - Relative velocity

[0, 100, 1000] rad/s (default)|vector
Input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

Dependencies

This parameter is visible only when the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature and velocitydependent friction coefficients. For more information, see Friction Parameter Dependencies.

Temperature vector - Temperature

[280, 300, 320] K (default) | increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

Dependencies

This parameter is visible only when the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Static friction coefficient - Static friction coefficient

0.35 (default) | scalar

Static or peak value of the friction coefficient. The static friction coefficient must be greater than the kinetic friction coefficient.

Dependencies

this parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

Static friction coefficient vector - Static friction coefficient [.4, .38, .36] (default)|vector

Static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

Dependencies

This parameter is visible only when the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and
velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient - Kinetic friction coefficient

0.3 (default) | positve scalar

The kinetic, or Coulomb, friction coefficient. The coefficient must be greater than zero.

Dependencies

This parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient vector - Kinetic friction coefficient [.3, .22, .19] (default)|[.3, .28, .25]| vector

Output values for kinetic friction coefficient as a vector. All values must be greater than zero.

If the Friction model parameter is set to

- Velocity-dependent kinetic friction coefficient - The vector must have same number of elements as relative velocity vector.
- Temperature-dependent friction coefficients - The vector must have the same number of elements as the temperature vector.

Dependencies

This parameter is visible only when the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient matrix - Kinetic friction coefficient [.34, .32, .3; .3, .28, .25; .25, .2, .15] (default)|matrix

Output values for kinetic friction coefficient as a matrix. All the values must be greater than zero. The size of the matrix must equal the size of the matrix that is the result of the temperature vector \times the kinetic friction coefficient relative velocity vector.

Dependencies

This parameter is visible only when the Friction model parameter is set to Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Friction coefficient interpolation method - Interpolation method Linear (default)|Smooth

Interpolation method for approximating the output value when the input value is between two consecutive grid points:

- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

Dependencies

This parameter is visible only when the Friction model parameter is set to Velocitydependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Friction coefficient extrapolation method - Extrapolation method Linear (default) | Nearest | Error

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:

- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

Dependencies

This parameter is visible only when the Friction model parameter is set to Velocitydependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Velocity tolerance - Relative velocity locking threshold

 $0.001 \mathrm{rad} / \mathrm{s}$ (default) | scalarRelative velocity below which the two surfaces can lock. The surfaces lock if the torque across the \mathbf{B} and \mathbf{F} rotational ports is less than the product of the effective radius, the static friction coefficient, and the applied normal force.

Threshold force - Normal contact force threshold 1 N (default) | scalar

The normal force applied to the physical signal port \mathbf{N} is applied to the contact only if the amount of force exceeds the value of the Threshold force parameter. Forces below the Threshold force are not applied so there is no transmitted frictional torque.

Viscous drag torque coefficient - Viscous drag torque 0 (default) | nonnegative scalar

Viscous drag torque coefficient.

Initial Conditions

Initial state - Initial clutch state
Unlocked (default) | Locked

Clutch state at the start of simulation. The clutch can be in one of two states, locked and unlocked. A locked clutch constrains the base and follower shafts to spin at the same velocity, that is, as a single unit. An unlocked clutch allows the two shafts to spin at different velocities, resulting in slip between the clutch plates.

Thermal Port

Thermal Port settings are visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or

Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Thermal mass - Thermal mass

$50 \mathrm{~kJ} / \mathrm{K}$ (default) | scalar
Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

Dependencies

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Initial temperature - Initial temperature
 300 K (default) | scalar

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses.

Dependencies

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

Dog Clutch | Double-Sided Synchronizer | Fundamental Friction Clutch | Logic-Controlled Clutch | Synchronizer | Unidirectional Clutch

Topics
"Gear Coupling Control Using Clutches"
Introduced in R2011a

Cycloidal Drive

High-ratio speed reducer based on cycloidal disk motion

Library

Gears

Description

This block represents a compact, high-ratio, speed-reduction mechanism that contains four key components:

- Eccentric cam
- Cycloidal disk
- Ring-gear housing
- Pin rollers

The eccentric cam, which extends from the base shaft, sits inside the cycloidal disk. This disk meshes with the ring-gear housing. The pin rollers, which extend from the follower shaft, sit in matching holes on the cycloidal disk.

During normal operation, the base shaft drives the eccentric cam. The cam spins inside the cycloidal disk, causing it to rotate in an eccentric pattern about an offset axis. As it moves, the cycloidal disk engages the internal teeth of the ring-gear housing. The internal meshing reverses the rotational velocity direction.

Pin rollers extending from cycloidal disk holes transmit rotational motion to the follower shaft. This shaft spins counter to the base shaft at a highly reduced speed. The large reduction ratio results from the near-equal cycloidal disk and ring gear tooth numbers. The effective gear reduction ratio is

$$
r=\frac{n_{R}-n_{C}}{n_{C}}
$$

where:

- r is the gear reduction ratio.
- n_{R} is the number of teeth on the ring gear.
- n_{C} is the number of teeth on the cycloidal disk.

The gear reduction ratio constrains the angular velocities of the base and follower shafts according to the expression

$$
\omega_{F}=-r \omega_{B},
$$

where:

- ω_{F} is the angular velocity of the follower shaft.
- ω_{C} is the angular velocity of the base shaft.

The gear reduction ratio also constrains the torques acting on the base and follower shafts, according to the expression

$$
T_{B}=r T_{F}+T_{f}
$$

where:

- T_{B} is the net torque at the base shaft.
- T_{F} is the net torque at the follower shaft.
- T_{f} is the torque loss due to friction. For more information, see "Model Gears with Losses".

The figure shows the cycloidal drive in front and side views. The kinematics of the drive system cause a reversal of the base and follower shaft angular velocities so that the two shafts spin in opposite directions.

The cycloidal drive can operate in reverse mode, e.g., with power flowing from the follower shaft to the base shaft. In this mode, torque transfer efficiencies are typically negligible. You can adjust the efficiency value in the block dialog box using the Efficiency from follower shaft to base shaft parameter.

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Specify the associated thermal parameters for the component.

Parameters

Main

Number of teeth on cycloid disk

Total number of teeth projecting outward from the cycloidal disk perimeter. This number should be slightly smaller than the number of teeth or pins on the ring gear. The ratio of the gear tooth numbers defines the relative angular velocities of the base and follower shafts. The default value is 20 .

Number of teeth on ring gear

Total number of teeth or pins projecting inward from the ring gear housing. This number should be slightly larger than the number of teeth on the cycloidal disk. The ratio of the two gear tooth numbers defines the relative angular velocities of the base and follower shafts. The default value is 24 .

Meshing Losses

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

Without Thermal Port

Efficiency from base shaft to follower shaft

Torque transfer efficiency in normal operation mode, e.g., with the base shaft driving the follower shaft. Efficiency values must fall in the interval [0, 1]. Larger efficiency values correspond to greater torque transfer between the base and follower shafts. Values approaching unity are typical. The default value is 0.90 .

Efficiency from follower shaft to base shaft

Torque transfer efficiency in reverse operation mode, e.g., with the follower shaft driving the base shaft. Efficiency values must fall in the interval [0, 1]. Larger efficiency values correspond to greater torque transfer between base and follower shafts. Values approaching zero are typical. The default value is 0.05 .

Power threshold

Absolute value of the cycloidal disk power above which the full efficiency factor applies. Below this value, a hyperbolic tangent function smooths the efficiency factor to one, lowering the efficiency losses to zero when at rest.

As a guideline, the power threshold should be lower than the expected power transmitted during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values might, however, raise the computational cost of simulation.

The default value is 0.001 W .

With Thermal Port

Temperature

Array of temperatures used to construct 1-D temperature-efficiency lookup tables. The array values must increase left to right. The temperature array must be the same size as each efficiency arrays. The default array is [280 300 320] K.

Efficiency from base shaft to follower shaft

Array of mechanical efficiencies with power flowing from the base shaft to the follower shaft. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.85 0.80].

Efficiency from follower shaft to base shaft

Array of mechanical efficiencies with power flowing from the follower shaft to the base shaft. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.10 0.05 0.03].

Power threshold

Absolute value of the cycloidal disk power above which the full efficiency factor applies. A hyperbolic tangent function smooths the efficiency factor between zero when at rest and the value provided by the temperature-efficiency lookup table when at the power threshold. The default value is 0.001 W .

Thermal Port

Thermal mass

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is $50 \mathrm{~J} / \mathrm{K}$.

Initial temperature

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

Ports

Port	Description
B	Rotational conserving port representing the base shaft
F	Rotational conserving port representing the follower shaft
H	Thermal conserving port for thermal modeling

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\text {Coder }}{ }^{\mathrm{TM}}$.

See Also

Harmonic Drive | Simple Gear | Simple Gear with Variable Efficiency

Introduced in R2014a

Differential

Gear mechanism that allows driven shafts to spin at different speeds

Library

Simscape / Driveline / Gears

Description

This block represents a gear mechanism that allows the driven shafts to spin at different speeds. Differentials are common in automobiles, where they enable the various wheels to spin at different speeds while cornering. Ports D, S1, and S2 represent the driving and driven shafts of the differential. Any of the shafts can drive the remaining two.

The block models the differential mechanism as a structural component based on Simple Gear and Sun-Planet Bevel Simscape Driveline blocks. The figure shows the block diagram of this structural component.

To increase the fidelity of the gear model, you can specify properties such as gear inertia, meshing losses, and viscous losses. By default, gear inertia and viscous losses are assumed negligible. The block enables you to specify the inertias of the gear carrier and internal planet gears only. To model the inertias of the outer gears, connect Simscape Inertia blocks to ports D, S1, and S2.

Thermal Modeling

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

Differential Gear Model

Ideal Gear Constraints and Gear Ratios

Differential imposes one kinematic constraint on the three connected axes:
$\omega_{\mathrm{D}} \quad=\quad \pm(1 / 2) g_{\mathrm{D}}\left(\omega_{\mathrm{S} 1} \quad+\quad \omega_{\mathrm{S} 2}\right)$
with the upper (+) or lower (-) sign valid for the differential crown to the right or left, respectively, of the centerline. The three degrees of freedom reduce to two independent degrees of freedom. The gear pairs are $(1,2)=(S, S)$ and $(C, D) . C$ is the carrier.

The sum of the lateral motions is the transformed longitudinal motion. The difference of side motions $\omega_{\mathrm{S} 1}-\omega_{\mathrm{S} 2}$ is independent of the longitudinal motion. The general motion of the lateral shafts is a superposition of these two independent degrees of freedom, which have this physical significance:

- One degree of freedom (longitudinal) is equivalent to the two lateral shafts rotating at the same angular velocity $\left(\omega_{\mathrm{S} 1}=\omega_{\mathrm{S} 2}\right)$ and at a fixed ratio with respect to the longitudinal shaft.
- The other degree of freedom (differential) is equivalent to keeping the longitudinal shaft locked $\left(\omega_{D}=0\right)$ while the lateral shafts rotate with respect to each other in opposite directions ($\omega_{\mathrm{S} 1}=-\omega_{\mathrm{S} 2}$).

The torques along the lateral axes, $\tau_{\mathrm{S} 1}$ and $\tau_{\mathrm{S} 2}$, are constrained to the longitudinal torque τ_{D} in such a way that the power flows into and out of the gear, less any power loss $P_{\text {loss }}$, sum to zero:
$\omega_{\mathrm{S} 1} \tau_{\mathrm{S} 1} \quad+\quad \omega_{\mathrm{S} 2} \tau_{\mathrm{S} 2} \quad+\quad \omega_{\mathrm{D}} \tau_{\mathrm{D}} \quad-\quad P_{\text {loss }}=\quad 0$
When the kinematic and power constraints are combined, the ideal case yields:
$g_{\mathrm{D}} \tau_{\mathrm{D}} \quad=2\left(\omega_{\mathrm{S} 1} \tau_{\mathrm{S} 1}+\omega_{\mathrm{S} 2} \tau_{\mathrm{S} 2}\right) \quad / \quad\left(\omega_{\mathrm{S} 1}+\quad \omega_{\mathrm{S} 2}\right) \quad$.

Fundamental Sun-Planet Bevel Gear Constraints

The effective differential constraint is composed of two subconstraints.

- The first comes from the coupling of the two sun-planet bevel gears to the carrier:

$$
\left(\begin{array}{lllllll}
\left(\omega_{\mathrm{S} 1}\right. & - & \left.\omega_{\mathrm{C}}\right) /\left(\omega_{\mathrm{S} 2}\right. & - & \omega_{\mathrm{C}}
\end{array}\right) \quad \begin{aligned}
& -g_{\mathrm{SP} 2} / g_{\mathrm{SP} 1}
\end{aligned}
$$

- The second comes from the coupling of the carrier to the longitudinal driveshaft: $\omega_{\mathrm{D}}=$ $\pm g_{\mathrm{D}} \omega_{\mathrm{C}}$.
$g_{\mathrm{SP} 1}=r_{\mathrm{S} 1} / r_{\mathrm{P} 1}$ and $g_{\mathrm{SP} 2}=r_{\mathrm{S} 2} / r_{\mathrm{P} 2}$ are the sun-planet gear ratios of the underlying sun-planet bevel gears, in terms of the radii r of the sun and planet gears. The Differential block is implemented with $g_{\mathrm{SP} 1}=g_{\mathrm{SP} 2}=1$, leaving g_{D} free to adjust.

Nonideal Gear Constraints and Losses

In the nonideal case, $\tau_{\text {loss }} \neq 0$. See "Model Gears with Losses".

Limitations

- Gears are assumed rigid.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

Ports

Port	Description
D	Rotational conserving port representing the longitudinal driveshaft
S1	Rotational conserving port representing one of the sun gears
S2	Rotational conserving port representing one of the sun gears
H	Thermal conserving port for thermal modeling

Parameters

Main

Crown gear located

Select the placement of the bevel crown gear with respect to the centerline of the gear assembly. The default is To the right of the centerline.

Carrier (C) to driveshaft (D) teeth ratio (NC/ND)

Fixed ratio g_{D} of the carrier gear to the longitudinal driveshaft gear. The default is 4 .

Meshing Losses

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

Without Thermal Port

Friction model

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.

- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency η satisfying $0<\eta \leq 1$. If you select this option, the panel changes from its default.

Constant Efficiency

Sun-sun and carrier-driveshaft ordinary efficiencies

Vector of torque transfer efficiencies $\left[\eta_{\text {SS }} \eta_{D}\right.$] for sun-sun and carrierlongitudinal driveshaft gear wheel pair meshings, respectively.

Sun-carrier and driveshaft-casing power thresholds

Vector of power thresholds $p_{\text {th }}$ above which full efficiency loss is applied, for sun-carrier and longitudinal driveshaft-casing [$p_{\mathrm{S}} p_{\mathrm{D}}$], respectively.

With Thermal Port

Temperature

Array of temperatures used to construct 1-D temperature-efficiency lookup tables. The array values must increase left to right. The temperature array must be the same size as each efficiency arrays. The default array is [280 300 320] K.

Sun-sun efficiency

Array of mechanical efficiencies with power flowing from one of the sun gears to the other. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 $0.9 \quad 0.85$].

Carrier-driveshaft efficiency

Array of mechanical efficiencies with power flowing from the gear carrier to the longitudinal driveshaft. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.9 0.85].

Sun-carrier and driveshaft-casing power thresholds

Array of power thresholds above which the full efficiency factors apply. Enter the thresholds for sun-carrier and longitudinal driveshaft-casing, in this order. A hyperbolic tangent function smooths the efficiency factors between zero when at rest and the values provided by the temperature-efficiency lookup tables at the power thresholds. The default array is [0.001 0.001] W.

Viscous Losses

Sun-carrier and driveshaft-casing viscous friction coefficients

Vector of viscous friction coefficients [$\mu_{\mathrm{S}} \mu_{\mathrm{D}}$] for the sun-carrier and longitudinal driveshaft-casing gear motions, respectively. The default is [0 0].

From the drop-down list, choose units. The default is newton-meters/(radians/second) ($\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$).

Inertia

Carrier inertia

Moment of inertia of the planet gear carrier. This value must be positive or zero. Enter 0 to ignore carrier inertia. The default value is $0 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$.

Planet gear inertia

Moment of inertia of the combined planet gears. This value must be positive or zero. Enter 0 to ignore gear inertia. The default value is $0 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$.

Thermal Port

Thermal mass

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is $50 \mathrm{~J} / \mathrm{K}$.

Initial temperature

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

Real-Time Simulation

Hardware-in-the-Loop Simulation

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{Tm}}$.

See Also

Disk Friction Clutch | Simple Gear | Sun-Planet Bevel

Topics

"Basic Motion, Torque, and Force Modeling"
"Limited Slip Differential with Clutches"
"Torsen Differential"
"Vehicle with Four-Wheel Drive"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

Introduced in R2011a

Disc Brake

Frictional brake with pressure-applying cylinder and pads Library: \quad Simscape / Driveline / Brakes \& Detents / Rotational

Description

The Disc Brake block represents a brake arranged as a cylinder applying pressure to one or more pads that can contact the shaft rotor. Pressure from the cylinder causes the pads to exert friction torque on the shaft. The friction torque resists shaft rotation.

Disc Brake Model

This figure shows the side and front views of a disc brake.

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The equation that the block uses to calculate brake torque, depends on the wheel speed, Ω, such that when $\Omega \neq 0$,

$$
T=\frac{\mu_{k} P \pi D_{b} 2 R_{m} N}{4} .
$$

However when $\Omega=0$, the torque applied by the brake is equal to the torque that is applied externally for wheel rotation. The maximum value of the torque that the brake can apply when $\Omega=0$, is

$$
T=\frac{\mu_{S} P \Pi D_{b} 2 R_{m} N}{4}
$$

In both cases, $R m=\frac{R o+R i}{2}$.
Where:

- T is the brake torque.
- $\quad P$ is the applied brake pressure.
- Ω is the wheel speed.
- N is the number of brake pads in disc brake assembly.
- μ_{s} is the disc pad-rotor coefficient of static friction.
- μ_{k} is the disc pad-rotor coefficient of kinetic friction.
- D_{b} is the brake actuator bore diameter.
- R_{m} is the mean radius of brake pad force application on brake rotor.
- R_{o} is the outer radius of brake pad.
- R_{i} is the inner radius of brake pad.

Thermal Model

You can model the effects of heat flow and temperature change by exposing the optional thermal port. To expose the port, in the Friction settings, set the Thermal Port parameter to Model. Exposing the port also exposes or changes the default value for these related settings, parameters, and variables:

- Friction > Temperature
- Friction > Static friction coefficient vector
- Friction > Coulomb friction coefficient vector
- Thermal Port > Thermal mass
- Variables > Temperature

Variables

Use the Variables settings to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Dependencies

Variable settings are visible only when, in the Friction settings, the Thermal port parameter is set to Model.

Ports

Input

P - Cylinder pressure, bars
 physical signal

Physical signal port associated with cylinder pressure.

Conserving

S - Shaft

rotational mechanical
Rotational mechanical conserving port associated with the shaft.

H - Heat

thermal
Thermal conserving port associated with heat flow.

Dependencies

This port is visible only when, in the Friction settings, the Thermal Port parameter is set to Model.

Exposing this port makes related parameters and variables visible.

Parameters

Geometry

Mean pad radius - Pad radius

150 mm (default) | positive scaler
Mean radius of the friction pads.
Cylinder bore - Bore diameter
10 mm (default) | positive scaler
Diameter of the piston.

Number of brake pads - Pad quantity

2 (default) | positive scalar integer
Number of friction pads.

Friction

Thermal port - Thermal model
 Omit (default) | Model

Model for heat flow and temperature change:

- Omit - Neglect thermal dynamics.
- Model - Include thermal dynamics.

Dependencies

When this parameter is set to Model, the thermal port and related parameter and variables are visible.

Temperature - Temperature
 [280, 300, 320] K (default) | increasing vector

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Model.

Static friction coefficient - Static friction

0.9 (default) | scalar

Coefficient of static friction. The value that you specify for this parameter must be greater than the value that you specify for the Coulomb friction coefficient parameter.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Omit.

Static friction coefficient vector - Static friction

[.9, .8, .7]|vector
Coefficient of static friction, such that:

- The number of elements in the vector must be the same as the number of elements in the specified vector for the Temperature parameter
- The values must be greater than the corresponding value that you specify for the Coulomb friction coefficient vector parameter.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Model.

Coulomb friction coefficient - Contact friction
 0.7 (default) | positive scalar

Coulomb friction coefficient at the belt-drum contact surface. The value must be greater than zero.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to 0mit.

Coulomb friction coefficient vector - Contact friction

$[.8, .7, .6]$ (default) | increasing vector of positive values
Coulomb friction coefficient at the belt-drum contact surface, such that:

- The number of elements in the vector must be the same as the number of elements in the specified vector for the Temperature parameter
- The values increase left to right.
- Each value must be greater than zero.

Dependencies

This parameter is only visible when the Thermal Port parameter is set to Model.

Breakaway friction velocity - Friction threshold
 0.1 rad/s (default) | scalar

Angular speed at which friction switches from static to kinetic.

Viscous friction coefficient - Viscous friction
 . $001 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | nonnegative scalar

For a wet brake, the viscous friction represents the energy loss to the cooling/lubricating fluid between the clutch plates. To model a wet brake, specify a nonzero value for the coefficient of viscous friction. To model a dry brake, specify 0 .

Thermal Port

Thermal mass - Resistance to temperature change
 50 kJ/K (default) | scalar

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

Dependencies

This parameter is only visible when in the Friction settings, the Thermal Port parameter is set to Model.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
Band Brake | Double-Shoe Brake | Loaded-Contact Rotational Friction | Rotational Detent Introduced in R2017b

Disk Friction Clutch

Friction clutch with disk plates that engage when plate pressure exceeds threshold Library: Simscape / Driveline / Clutches

Description

The Disk Friction Clutch block represents a friction clutch with two flat friction plate sets that come into contact to engage. The clutch engages when the applied plate pressure exceeds an engagement threshold pressure. Once engaged, the plates experience frictional torques that enable them to transmit power between the base and follower driveshafts.

The clutch can be bidirectional or unidirectional. A bidirectional clutch can slip in the positive and negative directions. A unidirectional clutch can slip only in the positive direction. The slip direction is positive if the follower shaft spins faster than the base shaft and negative if it slips slower. The block defines the slip velocity as the difference

$$
\omega=\omega_{\mathrm{F}}-\omega_{\mathrm{B}}
$$

where:

- ω is the relative angular velocity or slip velocity.
- ω_{F} is the angular velocity of the follower driveshaft.
- ω_{B} is the angular velocity of the base driveshaft.

The block provides a physical signal input port \mathbf{P} for the applied pressure between the clutch plates. The applied pressure must be greater than or equal to zero and has units of Pascals. If the input signal falls below zero, the block treats the plate pressure as zero.

Equations

The Disk Friction Clutch block is a simplified implementation of the Fundamental Friction Clutch block. The Fundamental Friction Clutch requires the kinetic and static friction
limit torques as input signals. The Disk Friction Clutch does not require the input data. Instead, the block calculates the kinetic and static friction from the clutch parameters and the input pressure signal P.

When you apply a pressure signal above threshold, such that the applied pressure equals or exceeds the pressure threshold, that is, $P \geq P_{\text {th }}$, the block can apply two kinds of friction to the driveline motion, kinetic and static. The clutch applies kinetic friction torque only when one driveline axis is spinning relative to the other driveline axis. The clutch applies static friction torque when the two driveline axes lock and spin together. The block iterates through multistep testing to determine when to lock and unlock the clutch.

Kinetic Friction

The kinetic friction torque opposes the relative slip and is applied with an overall minus sign. Mathematically, the kinetic friction is the positive sum of viscous drag and surface contact friction torques:

$$
\tau_{k}=\mu \cdot \omega+\tau_{\text {contact }}
$$

- τ_{K} is the kinetic friction torque.
- μ is the viscous drag coefficient.
- ω is the relative angular velocity, or slip velocity.
- $\tau_{\text {contact }}$ is the contact torque.

The contact friction is a product of six factors such that

$$
\tau_{\text {contact }}=k_{K} \cdot D \cdot N \cdot r_{e f f} \cdot P_{\text {fric }} \cdot A \geq 0,
$$

where:

- k_{K} is the dimensionless coefficient of kinetic friction of clutch discs, which is a function of ω.
- D is the clutch de-rating factor.
- N is the number of friction surfaces.
- $r_{e f f}$ is the effective torque radius, that is, the effective moment arm of clutch friction force.
- $P_{\text {fric }}$ is the clutch friction capacity, such that $P_{f r i c}=\max \left[\left(P-P_{t h}\right), 0\right]$.
- A is the engagement surface area.

You specify the kinetic friction coefficient, k_{K}, as either a constant or a tabulated discrete function of relative angular velocity ω. The tabulated function is assumed to be symmetric for positive and negative values of the relative angular velocity. Therefore, specify k_{K} for positive values of ω only.

The clutch applies a normal force from its piston as the product of the clutch friction capacity, $P_{\text {fric }}$, and engagement surface area, A, on each of N friction surfaces. The pressure signal, P, should be nonnegative. If P is less than the pressure threshold. $P_{\text {th }}$, the clutch applies no friction at all.

The effective torque radius, $r_{\text {eff }}$, is the effective moment arm of clutch friction force, measured from the driveline axis, at which the kinetic friction forces are applied at the frictional surfaces. It is related to the geometry of the friction surface by:

$$
r_{\mathrm{eff}}=\frac{2}{3} \frac{r_{0}^{3}-r_{\mathrm{i}}^{3}}{r_{0}^{2}-r_{\mathrm{i}}^{2}}
$$

where, for a friction surface, modeled as an annular disk:

- r_{o} is the outer disk radius.
- r_{i} is the inner disk radius.

The clutch de-rating factor, D, accounts for clutch wear. For a new clutch, D is one. For a clutch approaching a uniform wear state:

$$
D \rightarrow \frac{3}{4} \frac{\left(r_{o}+r_{i}\right)^{2}}{r_{o}^{2}+r_{o} r_{i}+r_{i}^{2}} .
$$

Static Friction

The static friction limit is related to the kinetic friction, setting ω to zero and replacing the kinetic with the static friction coefficient:

$$
\tau_{S}=k_{S} \cdot D \cdot N \cdot r_{e f f} \cdot P_{f r i c} \cdot A \geq 0
$$

where:

- τ_{S} is the static friction torque limit, which is the product of the static friction peak factor and the kinetic friction torque as ω approaches 0 .
- k_{K} is the dimensionless coefficient of kinetic friction of clutch discs, which is a function of ω.
- D is the clutch de-rating factor.
- N is the number of friction surfaces.
- $r_{e f f}$ is the effective torque radius, that is, the effective moment arm of clutch friction force.
- $P_{\text {fric }}$ is the clutch friction capacity, such that $P_{f r i c}=\max \left[\left(P-P_{t h}\right), 0\right]$.
- A is the engagement surface area.
$k_{S}>k_{K}$, so that the torque τ needed across the clutch to unlock it by overcoming static friction is larger than the kinetic friction at the instant of unlocking, when $\omega=0$..

The static friction torque range or limits are then defined symmetrically as

$$
\tau_{S} \equiv \tau_{S}^{+}=-\tau_{S}^{-}
$$

Wait State: Locking and Unlocking

The Wait state of the Disk Friction Clutch is identical to the Wait state of the Fundamental Friction Clutch, with the replacement of the positive kinetic friction condition, $\tau_{K}>0$, by the positive clutch friction capacity condition, the applied pressure equals or exceeds the pressure threshold, that is, $P \geq P_{t h}$.

Power Dissipated by the Clutch

The power dissipated by the clutch is the absolute value of the product of slip velocity, ω, and the kinetic friction torque, τ_{K}, that is, $\left|\omega \cdot \tau_{K}\right|$. The clutch dissipates power only if it is both slipping, $\omega \neq 0$, and applying kinetic friction, $\tau_{k}>0$.

Velocity-Dependent and Temperature-Dependent Friction Models

Velocity-Dependent Model

You can model the effects of rotational velocity change by selecting a velocity-dependent model. To choose a velocity-dependent model, in the Friction settings, set the Friction model parameter to Velocity-dependent kinetic friction coefficient. For
information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-127.

For the velocity-dependent model these related parameters become visible in the Friction settings:

- Relative velocity vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method

Thermal Model

You can model the effects of heat flow and temperature change by selecting a temperature-dependent model. To choose a temperature-dependent model, in the Friction settings, set the Friction model parameter to Temperature-dependent friction coefficients. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-127.

For the temperature-dependent model, thermal port \mathbf{H} and these parameters are visible:

- In the Friction settings:
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

Thermal, Velocity-Dependent Model

You can model the effects of rotational velocity change and heat flow by selecting a velocity-dependent and temperature-dependent model. To choose a model that depends on both velocity and temperature, in the Friction settings, set the Friction model parameter to Temperature and velocity-dependent friction coefficients.

For the velocity-dependent and temperature-dependent model, thermal port \mathbf{H} and these related settings and parameters become visible:

- In the Friction settings:
- Relative velocity vector
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient matrix
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

Ports

Input

P - Pressure

physical signal
Physical signal input port for the applied pressure between the clutch plates. This signal is positive or zero. A signal of less than zero is interpreted as zero.

Conserving

B - Base

mechanical rotational
Rotational conserving port associated with the driving, or base, shaft.

F - Follower

mechanical rotational
Rotational conserving port associated with the driven, or follower, shaft.

H - Heat flow

thermal
Thermal conserving port associated with heat flow.

Dependencies

This port is visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies and "Friction model" on page 1-0 .

Parameters

Geometry

Geometry model - Geometry parameterization method Define effective radius (default)|Define annular region

Parameterization method for modeling the clutch friction geometry.

Dependencies

The Effective torque radius parameter is visible only If this parameter is set to Define effective radius:

These parameters are visible only If this parameter is set to Define annular region:

- Friction surface outside diameter

- Friction surface inside diameter

Effective torque radius - Moment arm radius

130mm (default) | positive scalar
Effective moment arm radius, $r_{\text {eff }}$, that determines the kinetic friction torque inside the clutch.

Dependencies

This parameter is visible only if the Geometry model parameter is set to Define effective radius.

Friction surface outside diameter - Friction surface outer diameter 150 mm (default) | positive scalar

Diameter, $2 r_{o}$, across the outer edge of the friction disk annulus.

Dependencies

This parameter is visible only if the Geometry model parameter is set to Define annular region.

Friction surface inside diameter - Friction surface inner diameter

 100 mm (default) | nonnegative scalarDiameter, $2 r_{i}$, across the inner edge of the friction disk annulus.

Dependencies

This parameter is visible only if the Geometry model parameter is set to Define annular region.

Number of friction surfaces - number of friction surfaces

4 (default) | positive scalar integer
Number, N, of friction-generating contact surfaces inside the clutch.

Engagement piston area - Pressure application area

 $0.001 \mathrm{~m}^{\wedge} 2$ (default) | positive scalarEffective area, A, of the clutch piston when the piston is applying pressure across the clutch.

Directionality - Allowable slip directions
 Bidirectional (default) | Unidirectional

Slip directions the clutch allows between its plates. A bidirectional clutch allows positive and negative slip velocities. A unidirectional clutch allows only positive slip velocities.

The unidirectional clutch is equivalent to a friction clutch connected in parallel to a oneway clutch that disengages only when the slip velocity becomes positive. To model a unidirectional clutch with slip in the negative direction, reverse the base and follower port connections.

Friction

The table shows how the visibility of some ports, parameters, and settings depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Friction Parameter Dependencies

Friction			
Friction model			
Fixed kinetic friction coeffici ent	Velocity-dependent kinetic friction coefficient	Temperaturedependent friction coefficients	Temperature and velocity-dependent friction coefficients
		Exposes: - Conserving port H - Thermal Port settings	Exposes: - Conserving port H - Thermal Port settings
-	Relative velocity vector	-	Relative velocity vector
-	-	Temperature vector	Temperature vector
Static friction coefficien t	Static friction coefficient	Static friction coefficient vector	Static friction coefficient vector
Kinetic friction coefficien t	Kinetic friction coefficient vector	Kinetic friction coefficient vector	Kinetic friction coefficient matrix
-	Friction coefficient interpolation method	Friction coefficient interpolation method	Friction coefficient interpolation method
-	Friction coefficient extrapolation method	Friction coefficient extrapolation method	Friction coefficient extrapolation method
De-rating factor	De-rating factor	De-rating factor	De-rating factor
Clutch velocity tolerance	Clutch velocity tolerance	Clutch velocity tolerance	Clutch velocity tolerance

Friction

Engageme nt threshold pressure	Engagement threshold pressure	Engagement threshold pressure	Engagement threshold pressure

Friction model - Friction model

Fixed kinetic friction coefficient (default)|Velocity-dependent kinetic friction coefficient|Temperature-dependent friction coefficients| Temperature and velocity-dependent friction coefficients

Parameterization method to model the kinetic friction coefficient. The options and default values for this parameter depend on the friction model that you select for the block. The options are:

- Fixed kinetic friction coefficient - Provide a fixed value for the kinetic friction coefficient.
- Velocity-dependent kinetic friction coefficient - Define the kinetic friction coefficient by one-dimensional table lookup based on the relative angular velocity between disks.
- Temperature-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature.
- Temperature and velocity-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature and the relative angular velocity between disks.

Dependencies

The friction model setting affects the visibility of other parameters, settings, and ports. For more information, see Friction Parameter Dependencies.

Relative velocity vector - Relative velocity

[0, 100, 1000] rad/s (default)|vector
Input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

Dependencies

This parameter is visible only if the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature and velocitydependent friction coefficients. For more information, see Friction Parameter Dependencies.

Temperature vector - Temperature
 [280, 300, 320] K (default) | increasing vector

Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

Dependencies

This parameter is visible only if the Friction model parameter is set to Temperaturedependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Static friction coefficient - Static friction coefficient

0.35 (default) | positive scalar

Static or peak value of the friction coefficient. The static friction coefficient must be greater than the kinetic friction coefficient.

Dependencies

this parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

Static friction coefficient vector - Static friction coefficient [.4, .38, .36] (default)|vector

Static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

Dependencies

This parameter is visible only if the Friction model parameter is set to Temperaturedependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient - Kinetic friction coefficient

0.3 (default) | positive scalar

The kinetic, or Coulomb, friction coefficient. The coefficient must be greater than zero.

Dependencies

This parameter is visible only if the Friction model parameter is set to Fixed kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient vector - Kinetic friction coefficient [.3, .22, .19] (default)|[.3, .28, .25]| positive vector

Output values for kinetic friction coefficient as a vector. All values must be greater than zero.

If the Friction model parameter is set to

- Velocity-dependent kinetic friction coefficient - The vector must have same number of elements as relative velocity vector.
- Temperature-dependent friction coefficients - The vector must have the same number of elements as the temperature vector.

Dependencies

This parameter is visible only if the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient matrix - Kinetic friction coefficient

 [.34, . 32, .3; .3, . 28, . 25 ; . 25, .2, .15] (default) | positive matrixOutput values for kinetic friction coefficient as a matrix. All the values must be greater than zero. The size of the matrix must equal the size of the matrix that is the result of the temperature vector \times the kinetic friction coefficient relative velocity vector.

Dependencies

This parameter is visible only if the Friction model parameter is set to Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Friction coefficient interpolation method - Extrapolation method Linear (default)|Smooth

Interpolation method for approximating the output value when the input value is between two consecutive grid points:

- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

Dependencies

This parameter is visible only if the Friction model parameter is set to Velocitydependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Friction coefficient extrapolation method - Interpolation method Linear (default) | Nearest | Error

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:

- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

Dependencies

This parameter is visible only if the Friction model parameter is set to Velocitydependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

De-rating factor - De-rating factod

1 (default) | positive scalar
Dimensionless de-rating factor, D, that accounts for clutch disk wear by proportionately reducing clutch friction.

Clutch velocity tolerance - Relative velocity locking threshold

 0.001 rad/s (default)| nonnegative scalarMaximum slip velocity at which the clutch can lock. The slip velocity is the signed difference between the base and follower shaft angular velocities, that is, $w=w_{F}-w_{B}$. If the kinetic friction torque is nonzero and the transferred torque is within the static friction torque limits, then the clutch locks if the actual slip velocity falls below the velocity tolerance.

Engagement threshold pressure - Normal contact force threshold 100 Pa (default) | nonnegative scalar

Minimum pressure $P_{t h}$ at which the clutch engages. If the pressure input signal falls below this threshold, the clutch automatically disengages.

Viscous Losses

Viscous drag torque coefficient - Viscous drag torque coefficient
$0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | nonnegative scalar
Viscous friction coefficient μ applied to the relative slip ω between the base and follower axes.

Initial Conditions

Initial state - Initial clutch state
Unlocked (default) | Locked

Clutch state at the start of simulation. The clutch can be in one of two states, locked and unlocked. A locked clutch constrains the base and follower shafts to spin at the same velocity, that is, as a single unit. An unlocked clutch allows the two shafts to spin at different velocities, resulting in slip between the clutch plates.

Thermal Port

Thermal Port settings are visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Thermal mass - Thermal mass
 $50 \mathrm{~kJ} / \mathrm{K}$ (default) | scalar

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

Dependencies

This parameter is visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Initial temperature - Initial temperature
 300 K (default) | scalar

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

Dependencies

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
Differential | Fundamental Friction Clutch | Torque Converter | Variable Ratio Transmission

Topics

"Gear Coupling Control Using Clutches"
"Clutches For Accelerating and Braking"
"CR-CR Four-Speed Transmission"
"Custom Clutch"
"Hydraulically-Actuated Driveline Clutch"
"Two-Speed Transmission"
"Vehicle with Dual Clutch Transmission"
Vehicle with Four-Speed Transmission

Introduced in R2011a

Dog Clutch

Clutch with toothed plates that engage when plate teeth become enmeshed Library: Simscape / Driveline / Clutches

Description

This block represents a nonslip clutch, a mechanical device that relies on the positive engagement of interlocking teeth to transfer torque between driveline shafts. The clutch contains three key components:

- Ring
- Hub
- Shift linkage

The ring and the hub are toothed components. The ring spins with the output shaft, sliding along its longitudinal axis to engage or disengage the coaxial hub. The hub, which sits on a bearing encircling the same shaft, can spin independently until engaged.

Engagement occurs when the toothed components interlock. Once engaged, the ring and the hub spin together as a unit. To control engagement, the dog clutch contains a shift linkage that governs the position of the ring with respect to the hub.

Moving the ring towards the hub so that their teeth interlock changes the clutch state to engaged. Tooth overlap must exceed a minimum value for engagement. Moving the ring in reverse so that the two sets of teeth no longer interlock changes the clutch state back to disengaged.

Port \mathbf{S} specifies the shift linkage position. When the clutch is fully disengaged, the shift linkage position is zero. When the clutch is fully engaged, the shift linkage position equals the sum of the tooth height and the ring-hub clearance of the fully disengaged state:

$$
z=h+z_{\text {Gap }}
$$

where:

- z is the shift linkage position.
- h is the tooth height.
- $z_{\text {Gap }}$ is the ring-hub clearance when disengaged.

The figure shows side and front views of the dog clutch and some of its relevant variables.

Torque Transmission Models

The Dog Clutch block provides a choice of two torque transmission models.

Friction Clutch Approximate Model

Treat clutch engagement as a friction phenomenon between the ring and the hub. This model ignores special effects such as backlash, an approximation that makes the block better suited for linearization, fixed-step simulation, and hardware-in-loop (HIL) simulation. The Fundamental Friction Clutch block provides the foundation for the model.

In the friction approximate model, the clutch has three possible configurations: disengaged, engaged, and locked. When disengaged, the contact force between the ring and the hub is zero. This force remains zero until the shift linkage reaches the minimum position for engagement.

When the ring-hub tooth overlap, h, exceeds the minimum value for engagement, the contact force between the two components begins to increase linearly with the shift linkage position, z.

At full engagement, the contact force reaches its maximum value, and the clutch state switched to locked. In this state, the ring and the hub spin as a unit without slip. To unlock the clutch, the transmitted torque must exceed the maximum allowed value that you specify.

Dynamic Model with Backlash

Capture clutch phenomena such as backlash, torsional compliance, and contact forces between ring and hub teeth. This model provides greater accuracy than the friction clutch approximation.

In the dynamic model, the clutch has two possible configurations: disengaged and engaged. When disengaged, the contact force between the ring and the hub is zero. This force remains zero until the shift linkage reaches the minimum position for engagement.

When the ring-hub tooth overlap, h, exceeds the minimum value for engagement, a contact force kicks in between the two components. This force is the sum of torsional spring and damper components. Including backlash between the ring and hub teeth:

$$
T_{C}=\left\{\begin{array}{cc}
-k_{R H}\left(\phi-\frac{\delta}{2}\right)-\mu_{R} \cdot \omega & \phi>\frac{\delta}{2} \\
0 & -\frac{\delta}{2}<\phi<\frac{\delta}{2}, \\
-k_{R H}\left(\phi+\frac{\delta}{2}\right)-\mu_{R} \omega & \phi<-\frac{\delta}{2}
\end{array}\right.
$$

where:

- $k_{R H}$ is the torsional stiffness of the ring-hub coupling.
- ϕ is the relative angle, about the common rotation axis, between the ring and the hub.
- δ is the backlash between ring and hub teeth.
- ω is the relative angular velocity between the ring and the hub. This variable describes how fast the two components slip past each other.

Compliant end stops limit the translational motion of the clutch shift linkage and the ring. The compliance model treats the end stops as linear spring-damper sets. The location of
the end stops depends on the relative angle and angular velocity between the ring and hub teeth:

- If the teeth align and the relative angular velocity is smaller than the maximum value for clutch engagement, the end-stop location is the sum of the ring-hub clearance when fully disengaged and the tooth height. With the end stop at this location, the clutch can engage.
- If the teeth do not align or the relative angular velocity exceeds the maximum value for clutch engagement, the end-stop location is set to prevent the ring from engaging the hub. The clutch remains disengaged.

Translational friction opposes shift linkage and ring motion. This friction is the sum of Coulomb and viscous components:

$$
F_{Z}=-k_{K} \cdot F_{N} \cdot \tanh \left(\frac{4 v}{v_{t h}}\right)-\mu_{T} v
$$

where:

- F_{Z} is the net translational friction force acting on the shift linkage and ring.
- k_{K} is the kinetic friction coefficient between ring and hub teeth.
- F_{N} is the normal force between ring and hub teeth.
- v is the translational velocity of the shift linkage and the ring.
- $v_{t h}$ is the translational velocity threshold. Below this threshold, a hyperbolic tangent function smooths the Coulomb friction force to zero as the shift linkage and ring velocity tends to zero.
- μ_{T} is the viscous damping coefficient acting on the shift linkage and the ring.

Clutch Engagement Conditions

The clutch engages when it satisfies a set of geometrical and dynamic conditions. These conditions specify the values that certain variables can take for clutch engagement to occur:

- The minimum position at which the ring and the hub can engage is

$$
z=h_{0}+z_{G a p}
$$

where h_{0} is the minimum tooth overlap for clutch engagement. Adjust this parameter to minimize engagement instability, that is, the tendency of the clutch to switch rapidly between engaged and disengaged states

- The magnitude of the relative angular velocity between the ring and the hub is smaller than the maximum engagement velocity, that is:

$$
|\omega|<\left|\omega_{\max }\right|
$$

where $\omega_{\max }$ is the maximum value of the relative angular velocity at which engagement can occur.

- If using the friction clutch approximate model, engagement occurs only if torque transfer between the ring and the hub remains smaller than the maximum transmitted torque that the clutch supports.
- If using the dynamic model with backlash, engagement occurs only if the relative angular position of the ring and hub teeth allows them to interlock.

Rotational Power Dissipation

When the clutch slips under an applied torque, it dissipates power. The power loss equals the product of the slip angular velocity and the contact torque between the ring and the hub:

$$
P_{\text {loss }}=\omega \cdot T_{C}
$$

where:

- $P_{\text {loss }}$ is the dissipated power due to slipping.
- T_{C} is the kinetic contact torque.

Thermal Modeling

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, in the Clutch settings, set the Thermal port parameter to Model. Specify the associated thermal parameters for the component.

Ports

Input

S - Shift linkage
 physical signal

Physical signal input port associated with the shift linkage.

Dependencies

If, in the Shift Linkage settings, the Shift linkage control parameter is set to:

- Physical signal - Input shift linkage position directly through the optional physical signal port, S.
- Conserving port - Input the shift linkage position dynamically through the optional translational conserving port, S. When you select this option, related Shift Linkage parameters are exposed.

Output

X - Clutch position
 physical signal

Physical signal output port associated with clutch position.

Conserving

H - Clutch hub

mechanical rotational
Mechanical rotational conserving port associated with the clutch hub

R - Clutch ring

mechanical rotational
Mechanical rotational conserving port associated with the clutch ring.

S - Shift linkage
mechanical rotational

Mechanical rotational conserving port associated with shift linkage.

Dependencies

If, in the Shift Linkage settings, the Shift linkage control parameter is set to:

- Physical signal - Input shift linkage position directly through the optional physical signal port, S.
- Conserving port - Input the shift linkage position dynamically through the optional translational conserving port, S. When you select this option, related Shift Linkage parameters are exposed.

T - Heat flow

thermal
Thermal conserving port associated with heat flow.

Dependencies

This port is visible only when, in the Clutch settings, the Thermal Port parameter is set to Model.

Exposing this port makes related settings visible.

Parameters

The table shows how the specified options for parameters in both the Shift Linkage and Clutch settings affect the visibility of:

- Parameters in the Clutch, Shift Linkage, Engagement Conditions, and Initial Conditions settings
- Thermal Port settings

To learn how to read the table, see "Parameter Dependencies" on page B-2.

Dog Clutch Parameter Dependencies

Settings	Parameters and Options					
Shift Linkage	Shift linkage control					
	Conserving Port			Physical signal		
Clutch	Thermal port			Thermal port		
	Omit		Model	Omit		Model
	Torque transmission model			Torque transmission model		
	```Friction clutch approxim ation - Suitable for HIL and lineariz ation```	Dynamic with backlash	-	```Friction clutch approxim ation - Suitable for HIL and lineariz ation```	Dynamic with backlash	-
	-	-	Temperat ure vector	-	-	Temperat ure vector
	Maximum transmitte d torque	-	Maximum transmitte d torque vector	Maximum transmitte d torque	-	Maximum transmitte d torque vector
	-	-	Interpolat ion method	-	-	Interpolat ion method
	-	-	Extrapolat ion method	-	-	Extrapolat ion method
	Clutch teeth mean radius	Clutch   teeth   mean   radius	Clutch   teeth   mean   radius	Clutch   teeth   mean   radius	-	Clutch   teeth   mean   radius


Settings	Parameters and Options					
	-	Number of teeth	-	-	Number of teeth	-
	-	Rotational backlash	-	-	Rotational backlash	-
	-	Torsional stiffness	-	-	Torsional stiffness	-
	-	Torsional damping	-	-	Torsional damping	-
Shift Linkage	Tooth height					
	Ring-hub clearance when disengage d					
	Hard stop at back of shift linkage	Hard stop at back of shift linkage	Hard stop at back of shift linkage	-	-	-
	Ring stop stiffness	Ring stop stiffness	Ring stop stiffness	-	-	-
	Ring stop damping	Ring stop damping	Ring stop damping	-	-	-
	Shift   linkage viscous friction coefficient	Shift   linkage viscous friction coefficient	Shift   linkage viscous friction coefficient	-	-	-
	-	Toothtooth friction coefficient	-	-	-	-


Settings	Parameters and Options					
Engageme   nt   Condition   $s$	Linkage travel direction					
	Maximum engageme nt speed	Maximum engageme nt speed	Maximum engageme nt speed	-	-	-
	Tooth overlap to engage	Tooth overlap to engage	$\qquad$	Tooth overlap to engage	Tooth overlap to engage	Tooth overlap to engage
Initial   Condition   $s$	Clutch initial state					
	Initial shift linkage position	Initial shift linkage position	Initial shift linkage position	-	-	-
	-	Initial ring-hub offset angle	-	-	Initial ring-hub offset angle	-
Thermal Port	-	-	Thermal mass	-	-	Thermal mass
	-	-	$\underset{\substack{\text { Initial } \\ \text { temperatu } \\ \text { re }}}{\text { 位 }}$	-	-	$\underset{\substack{\text { Initial } \\ \text { remperatu } \\ \text { re }}}{ }$

## Clutch

## Thermal port - Thermal model

Omit (default) | Model
Model for heat flow and temperature change:

- Omit - Temperature-independent model.
- Model - Temperature-dependent model.


## Dependencies

For the temperature-independent model, that is, if this parameter is set to Omit, the Torque transmission model parameter and other related parameters in the Clutch settings are visible.

For the temperature-dependent model, that is, when this parameter is set to Model, related parameters in the Clutch settings, thermal port T, and Thermal Port settings are visible.

## Temperature vector - Temperature

[280, 300, 320] K (default) | increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Model.

## Torque transmission model - Torque transmission model

Friction clutch approximation - Suitable for HIL and linearization (default)|Dynamic with backlash

Computational framework for modeling the dynamic behavior of the dog clutch:

- Friction clutch approximation - Suitable for HIL and linearization - Model clutch engagement as a friction phenomenon between the ring and the hub. This model, based on the Fundamental Friction Clutch block, provides a computationally efficient approximation of the dog clutch.
- Dynamic with backlash - Model clutch engagement in detail, accounting for such phenomena as backlash, torsional compliance, and contact forces between ring and hub teeth. Selecting this option causes additional Shift Linkage and Initial Conditions parameters to appear.


## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter is set to Omit.

The visibility of related parameters in the Clutch and Shift Linkage settings is affected by the option that you select for this parameter.

## Temperature vector - Temperature [280, 300, 320] K (default) | increasing vector

Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Model.

## Maximum transmitted torque - Maximum transmitted torque

1000 N*m (default) | positive scalar
Largest torque that the clutch can transmit, corresponding to a nonslip engaged configuration. If the torque transmitted between the ring and the hub exceeds this value, the two components begin to slip with respect to each other. This torque determines the static friction limit in the friction clutch approximation

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter is set to Omit and the Torque transmission model parameter is set to Friction clutch approximation - Suitable for HIL and linearization.

Maximum transmitted torque vector - Maximum transmitted torque [1000, 1050, 1000] N*m (default) | vector

Largest torque that the clutch can transmit, corresponding to a nonslip engaged configuration, specified as a vector. If the torque transmitted between the ring and the hub exceeds this value, the two components begin to slip with respect to each other. This torque determines the static friction limit in the friction clutch approximation. The vector has the same number of elements as the temperature vector.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Model.

## Interpolation method - Interpolation method <br> Linear (default) | Smooth

Interpolation method for approximating the output value when the input value is between two consecutive grid points:

- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Model.

## Extrapolation method - Extrapolation method

Linear (default) | Nearest | Error
Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:

- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Model.

Clutch teeth mean radius - Clutch teeth mean radius<br>50 mm (default) | positive scalar

Distance from the ring or hub center to the corresponding tooth center. The mean tooth radius determines the normal contact forces between ring and hub teeth given the transmission torque between the two components. The value must be greater than zero.

## Dependencies

This parameter is not visible if all of these conditions are met:

- In the Clutch settings:
- Thermal port is set to 0mit.
- Torque transmission model is set to Dynamic with backlash.
- In the Shift Linkage settings, the Shift linkage control parameter is set to Physical control.


## Number of teeth - Number of ring or hub teeth

## 6 (default) | positive nonzero scalar integer

Total number of teeth in the ring or the hub. The two components have equal tooth numbers. The value must be greater than or equal to one.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Omit and the Torque transmission model parameter is set to Dynamic with backlash.

## Rotational backlash - Rotational backlash

10 deg (default) | positive scalar
Allowable angular motion, or play, between the ring and hub teeth in the engaged clutch configuration. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Omit and the Torque transmission model parameter is set to Dynamic with backlash.

## Torsional stiffness - Torsional stiffness

$10 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}$ (default) | positive scalar
Linear torsional stiffness coefficient at the contact interface between the ring and hub teeth. This coefficient characterizes the restoring component of the contact force between
the two sets of teeth. Greater stiffness values correspond to greater contact forces. The value must be greater than zero. The default value is $10 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}$.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Omit and the Torque transmission model parameter is set to Dynamic with backlash.

## Torsional damping - Torsional damping <br> $100 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | positive scalar

Linear torsional damping coefficient at the contact interface between the ring and hub teeth. This coefficient characterizes the dissipative component of the contact force between the two sets of teeth. Greater damping values correspond to greater energy dissipation during contact. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Clutch settings, the Thermal port parameter to Omit and the Torque transmission model parameter is set to Dynamic with backlash.

## Shift Linkage

## Shift linkage control - Shift linkage control port

 Physical signal (default)|Conserving portPort type for shift linkage control:

- Physical signal - Input shift linkage position directly through the optional physical signal port, S.
- Conserving port - Input the shift linkage position dynamically through the optional translational conserving port, S.


## Dependencies

This parameter determines whether the shift linkage control port, $\mathbf{S}$, is a conserving or physical signal port. Related Shift Linkage parameters are exposed if this parameter is set to Conserving port.

## Tooth height - Tooth height

10 mm (default) | positive scalar

Distance between the base and crest of a tooth. Ring and hub teeth share the same height. The tooth height and the ring-hub clearance when fully disengaged determine the maximum travel span of the shift linkage. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Shift Linkage settings, the Shift linkage control parameter to Conserving port.

## Ring-hub clearance when disengaged - Ring-hub clearance when disengaged 3 mm (default) | positive scalar

Maximum open gap between the ring and hub tooth crests along the shift linkage translation axis. This gap corresponds to the fully disengaged clutch state. The tooth height and the ring-hub clearance when fully disengaged determine the maximum travel span of the shift linkage. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Shift Linkage settings, the Shift linkage control parameter to Conserving port.

## Hard stop at back of shift linkage - Hard stop model On (default) | Off

Hard stop that prevents the shift linkage from traveling beyond the fully disengaged position:

- On - Hard stop when fully disengaged.
- Off - No hard stop when fully disengaged.


## Ring stop stiffness - Ring stop stiffness

10e5 N/m (default) | positive scalar
Linear stiffness coefficient of the ring end stop. This coefficient characterizes the restoring component of the contact force that resists translational motion past the end stops. Greater stiffness values correspond to greater contact forces and a smaller end stop compliance. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Shift Linkage settings, the Shift linkage control parameter to Conserving port.

## Ring stop damping - Ring stop damping le3 N/(m/s) (default) | nonegative scalar

Linear damping coefficient of the ring end stop. This coefficient characterizes the dissipative component of the contact force that resists translational motion past the end stops. Greater damping values correspond to greater energy dissipation during contact. The value must be greater than or equal to zero

## Dependencies

This parameter is visible only if, in the Shift Linkage settings, the Shift linkage control parameter to Conserving port.

## Shift linkage viscous friction coefficient - Shift linkage viscous friction coefficient <br> 100 N/(m/s) (default) | positive scalar

Linear damping coefficient acting on the shift linkage. This coefficient characterizes the dissipative force that resists shift linkage motion due to viscous damping. Greater coefficient values correspond to greater energy dissipation during shift linkage motion. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Shift Linkage settings, the Shift linkage control parameter to Conserving port.

## Tooth-tooth friction coefficient - Tooth-tooth contact kinetic friction coefficient

### 0.05 (default) | positive scalar

Kinetic friction coefficient at the contact interface between ring and hub teeth. This coefficient characterizes the dissipative force that resists shift linkage motion due to tooth-tooth contact during clutch engagement/disengagement.

Greater coefficient values correspond to greater energy dissipation during shift linkage motion. The value must be greater than zero.

## Dependencies

This parameter is only visible when the Shift linkage control parameter is set to Conserving port and, in the Clutch settings:

- Thermal port is set to 0mit
- Torque transmission model is set to Dynamic with backlash


## Engagement Conditions

## Linkage travel direction - Engagement condition travel direction Positive shift linkage displacement engages clutch (default)|Negative shift linkage displacement engages clutch

Direction the shift linkage must travel in to engage the clutch. Choices include positive and negative displacements.

## Maximum engagement speed - Engagement speed upper velocity threshold inf (default) | positive scalar

Relative angular velocity between the ring and the hub above which the clutch cannot engage. The value is specific to the specific gearbox or transmission. Minimizing the value helps avoid high dynamic impact during engagement. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Shift Linkage settings, the Shift linkage control parameter to Conserving port.

## Tooth overlap to engage - Tooth overlap engagement threshold 3 mm (default) | positive scalar

Overlap length between ring and hub teeth along the common longitudinal axis above which the clutch can engage. The clutch remains disengaged until the tooth overlap by at least this length. The value must be greater than zero.

## Initial Conditions

## Initial state - Initial clutch state <br> Unlocked (default) | Locked

Clutch state at the start of simulation:

- Unlocked - Clutch transmits zero torque between the ring and the hub.
- Locked - Clutch transmits torque between the ring and the hub.


## Initial shift linkage position - Initial shift linkage position 0 mm (default) | scalar

Shift linkage position at simulation time zero. Values between zero and the sum of the ring-hub clearance and the tooth overlap to engage are consistent with a disengaged clutch. Larger values are consistent with an engaged clutch.

## Dependencies

This parameter is only visible when both of these conditions are met:

- In the Clutch settings, the Thermal port parameter is set to Omit.
- In the Shift Linkage settings, Shift linkage control is set to Conserving port.


## Initial ring-hub offset angle - Initial ring-hub offset angle 0 deg (default) | scalar

Rotation angle between the ring and the hub at simulation time zero. This angle determines whether the ring and hub teeth can interlock, and hence whether the clutch can engage. The initial offset angle must satisfy these conditions:

- If the clutch initial state is disengaged, the initial offset angle must fall in the range

$$
-\frac{180^{\circ}}{N} \leq \phi_{0} \leq+\frac{180^{\circ}}{N}
$$

where $N$ is the number of teeth present in the ring or the hub. The two components contain the same number of teeth.

- If the clutch initial state is engaged, the initial offset angle must fall in the range

$$
-\frac{\delta}{2} \leq \phi_{0} \leq+\frac{\delta}{2}
$$

where $\delta$ is the backlash angle between the ring and hub teeth.

## Dependencies

This parameter is only visible when, in the Clutch settings, both of these conditions are met:

- Thermal port is set to Omit.
- Torque transmission model is set to Dynamic with backlash.


## Thermal Port

These settings are only visible when, in the Clutch Settings, the Thermal port parameter is set to Model.

## Thermal mass - Resistance to temperature change <br> 50 kJ/K (default) | scalar

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

## Dependencies

This parameter is only visible when, in the Clutch settings, the Thermal Port parameter is set to Model.

## Initial temperature - Initial temperature <br> 300 K (default) | scalar

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses.

## Dependencies

This parameter is only visible when, in the Clutch settings, the Thermal Port parameter is set to Model.

## More About

## Linearization

To optimize your model for linearization, use the Clutch > Torque transmission model parameter default setting, Friction clutch approximation - Suitable for HIL and linearization.

## Hardware-in-the-Loop Simulation

For optimal simulation performance, use the Clutch > Torque transmission model parameter default setting, Friction clutch approximation - Suitable for HIL and linearization.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

## See Also

Simscape Blocks<br>Fundamental Friction Clutch | Loaded-Contact Rotational Friction | Torsional SpringDamper

Topics<br>"Gear Coupling Control Using Clutches"<br>"Model Thermal Losses in Driveline Components"<br>"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

## Introduced in R2011a

## Double-Pinion Planetary Gear

Planetary gear train with two meshed planet gear sets


## Library

Simscape / Driveline / Gears

## Description

This block represents a planetary gear train with two meshed planet gear sets between the sun gear and the ring gear. A single carrier holds the two planet gear sets at different radii from the sun gear centerline, while allowing the individual gears to rotate with respect to each other. The gear model includes power losses due to friction between meshing gear teeth and viscous damping of the spinning gear shafts.


Structurally, the double-pinion planetary gear resembles a Ravigneaux gear without its second, large, sun gear. The inner planet gears mesh with the sun gear and the outer planet gears mesh with the ring gear. Because it contains two planet gear sets, the double-pinion planetary gear reverses the relative rotation directions of the ring and sun gears.

The teeth ratio of a meshed gear pair fixes the relative angular velocities of the two gears in that pair. The dialog box provides two parameters to set the ring-sun and outer planetinner planet gear teeth ratios. A geometric constraint fixes the remaining teeth ratios-ring-outer planet and inner planet-sun. This geometric constraint requires that the ring gear radius equal the sum of the sun gear radius with the inner and outer planet gear diameters:

$$
r_{r}=r_{s}+2 \cdot r_{p i}+2 \cdot r_{p o}
$$

where:

- $r_{r}$ is the ring gear radius
- $r_{s}$ is the sun gear radius
- $r_{p i}$ is the inner planet gear radius
- $r_{p o}$ is the outer planet gear radius


In terms of the ring-sun and outer planet-inner planet teeth ratios, the ring-outer planet teeth ratio is

$$
\frac{r_{r}}{r_{p o}}=2 \cdot \frac{\frac{r_{r}}{r_{s}}}{\left(\frac{r_{r}}{r_{s}}-1\right)} \cdot \frac{\left(\frac{r_{p o}}{r_{p i}}+1\right)}{\frac{r_{p o}}{r_{p i}}}
$$

The inner planet-sun teeth ratio is

$$
\frac{r_{p i}}{r_{s}}=\frac{\left(\frac{r_{r}}{r_{s}}-1\right)}{2\left(\frac{r_{p o}}{r_{p i}}+1\right)}
$$

The Differential block is a composite component. It contains three underlying blocks-Ring-Planet, Planet-Planet, and Sun-Planet-connected as shown in the figure. Each block connects to a separate drive shaft through a rotational conserving port.


## Thermal Modeling

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

## Ports

Port	Description
C	Rotational conserving port representing the planet gear carrier
S	Rotational conserving port representing the sun gear
R	Rotational conserving port representing the ring gear
H	Thermal conserving port for thermal modeling

## Parameters

## Main

## Ring (R) to sun (S) teeth ratio (NR/NS)

Teeth ratio between the ring and sun gears. This ratio is the number of teeth in the ring gear divided by the number of teeth in the sun gear. The default value is 2 .

## Outer planet (Po) to inner planet ( $\mathbf{P i}$ ) teeth ratio ( $\mathbf{N P o} / \mathbf{N P i}$ )

Teeth ratio between the outer-planet and inner-planet gears. This ratio is the number of teeth in the outer planet divided by the number of gear teeth in the inner planet. The default value is 1 .

## Meshing Losses

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

## Without Thermal Port

## Friction model

List of friction models at various precision levels for estimating power losses due to meshing.

- No meshing losses - Suitable for HIL simulation - Neglect friction between gear cogs. Meshing is ideal.
- Constant efficiency - Reduce torque transfer by a constant efficiency factor. This factor falls in the range $0<\eta \leq 1$ and is independent of load. Selecting this option exposes additional parameters.


## Sun-planet, ring-planet, and planet-planet ordinary efficiencies

Array of mechanical efficiencies between sun-planet, ring-planet, and planet-planet gear pairs, in that order. The default vector is [0.98 0.98 0.98].

## Sun-carrier, ring-carrier, and planet-carrier power thresholds

Array of power thresholds above which the full efficiency factors apply. Enter the thresholds in the order sun-carrier, ring-carrier, and planet-carrier. A hyperbolic tangent function smooths the efficiency factors from zero when at rest to the full efficiency values at the power thresholds.

As a guideline, the power threshold should be lower than the expected power transmitted during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values might, however, raise the computational cost of simulation. The default vector is [0.001 0.001 0.001] W.

## With Thermal Port

## Temperature

Array of temperatures used to construct 1-D temperature-efficiency lookup tables. The array values must increase left to right. The temperature array must be the same size as the efficiency arrays. The default array is [280 300 320] K.

## Sun-planet efficiency

Array of mechanical efficiencies with power flowing from the sun gear to the planet gears. Each array element is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.75 0.65 0.60].

## Ring-planet efficiency

Array of mechanical efficiencies with power flowing from the ring gear to the planet gears. Each array element is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.50 0.45 0.40].

## Planet-planet efficiency

Array of mechanical efficiencies with power flowing from the inner planet gears to the outer planet gears. Each array value is the ratio of output power to input power at
one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.50 0.45 0.40].

## Sun-carrier, ring-carrier and planet-carrier power thresholds

Array of power thresholds above which the full efficiency factors apply. Enter the thresholds in the order sun-carrier, ring-carrier, and planet-carrier. A hyperbolic tangent function smooths the efficiency factors between zero when at rest and the values provided by the temperature-efficiency lookup tables when at the power threshold. The default array is [0.001 0.001 0.001] W.

## Viscous Losses

Specify the power losses due to viscous damping of the gear carriers.
Sun-carrier, ring-carrier, and planet-carrier viscous friction coefficients
Enter a vector with the viscous friction coefficients that dampen sun-carrier, ringcarrier, and planet-carrier motion, in that order. From the drop-down list, select a physical unit. The default vector is [0 0 0] $\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$.

## Thermal Port

## Thermal mass

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is $50 \mathrm{~J} / \mathrm{K}$.

## Initial temperature

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

## Real-Time Simulation

## Hardware-in-the-Loop Simulation

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

## Extended Capabilities

C/C++ Code Generation<br>Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Simscape Blocks<br>Compound Planetary Gear | Planetary Gear | Ravigneaux Gear

## Topics

"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

## Introduced in R2013b

## Double-Shoe Brake

Frictional brake with two pivoted shoes diametrically positioned about a rotating drum Library: Simscape / Driveline / Brakes \& Detents / Rotational


## Description

The Double-Shoe Brake block represents a frictional brake with two pivoted rigid shoes that press against a rotating drum to produce a braking action. The rigid shoes sit inside or outside the rotating drum in a diametrically opposed configuration. A positive actuating force causes the rigid shoes to press against the rotating drum. Viscous and contact friction between the drum and the rigid shoe surfaces cause the rotating drum to decelerate.

Double-shoe brakes provide high braking torque with small actuator deflections in applications that include motor vehicles and some heavy machinery. The model employs a simple parameterization with readily accessible brake geometry and friction parameters.

## Equations

In the schematic, a) represents an internal double-shoe brake, and b) represents an external double-shoe brake. In both configurations, a positive actuation force $F$ brings the shoe and drum friction surfaces into contact. The result is a friction torque that causes deceleration of the rotating drum. Zero and negative forces do not bring the shoe and drum friction surfaces into contact and produce zero braking torque.


The model uses the long-shoe approximation. The equations for the friction torque that the leading and trailing shoes develop are:

$$
\begin{aligned}
& T_{L S}=\frac{c \mu p_{a} r_{D} 2\left(\cos \theta_{s b}-\cos \theta_{S}\right)}{\sin \theta_{a}}, \\
& T_{T S}=\frac{c \mu p_{b} r_{D} 2\left(\cos \theta_{s b}-\cos \theta_{S}\right)}{\sin \theta_{a}}, \\
& c=r_{a}+r_{p} \cos \theta_{p},
\end{aligned}
$$

where for $0 \leq \theta_{s} \leq \pi / 2$,

$$
\theta_{a}=\theta_{s},
$$

and for $\theta_{s} \geq \pi / 2$,

$$
\theta_{a}=\frac{\Pi}{2} .
$$

Where:

- $T_{L S}$ is the brake torque the leading shoe develops.
- $T_{T S}$ is the brake torque the trailing shoe develops.
- $\mu$ is the effective contact friction coefficient.
- $p_{a}$ is the maximum linear pressure in the leading shoe-drum contact.
- $p_{b}$ is the maximum linear pressure in the trailing shoe-drum contact.
- $r_{D}$ is the drum radius.
- $\theta_{s b}$ is the shoe beginning angle.
- $\theta_{s}$ is the shoe span angle.
- $\theta_{a}$ is the angle from hinge pin to maximum pressure point.
- $c$ is the arm length of the cylinder force with respect to the hinge pin.
- $r_{p}$ is the pin location radius.
- $\theta_{p}$ is the hinge pin location angle.
- $r_{a}$ is the actuator location radius.

The model assumes that only Coulomb friction acts at the shoe-drum surface contact. Zero relative velocity between the drum and the shoes produces zero Coulomb friction. To avoid discontinuity at zero relative velocity, the friction coefficient formula employs the hyperbolic function

$$
\mu=\mu_{\text {Coulombtanh }}\left(\frac{4 \omega_{\text {shaft }}}{\omega_{\text {threshold }}}\right),
$$

where:

- $\mu$ is the effective contact friction coefficient.
- $\mu_{\text {Coulomb }}$ is the contact friction coefficient.
- $\omega_{\text {shaft }}$ is the shaft velocity.
- $\omega_{\text {threshold }}$ is the angular velocity threshold.

Balancing the moments that act on each shoe with respect to the pin yields the pressure acting at the shoe-drum surface contact. The equations for determining the balance of moments for the leading shoe are

$$
F=\frac{M_{N}-M_{F}}{C}
$$

$$
M_{N}=\frac{p_{a} r_{p} r_{D}}{\sin \theta_{a}}\left(\frac{1}{2}\left[\theta_{s}-\theta_{s b}\right]-\frac{1}{4}\left[\sin 2 \theta_{s}-\sin 2 \theta_{s b}\right]\right)
$$

and

$$
M_{F}=\frac{\mu p_{a} r_{D}}{\sin \theta_{a}}\left(r_{D}\left[\cos \theta_{s b}-\cos \theta_{s}\right]+\frac{r_{p}}{4}\left[\cos 2 \theta_{s}-\cos 2 \theta_{s b}\right]\right),
$$

where:

- $F$ is the actuation force.
- $M_{N}$ is the moment acting on the leading shoe due to normal force.
- $M_{F}$ is the moment acting on the leading shoe due to friction force.
- $\quad c$ is the arm length of the cylinder force with respect to the hinge pin.
- $p_{a}$ is the maximum linear pressure at the shoe-drum contact surface.
- $r_{p}$ is the pin location radius.
- $\theta_{p}$ is the hinge pin location angle.
- $r_{a}$ is the actuator location radius.

The model does not simulate self-locking brakes. If brake geometry and friction parameters cause a self-locking condition, the model produces a simulation error. A brake self-locks if the friction moment exceeds the moment due to normal forces, that is, when $M_{F}>M_{N}$.

The balance of moments for the trailing shoe is

$$
F=\frac{M_{N}+M_{F}}{C} .
$$

The net braking torque is

$$
T=T_{L S}+T_{T S}+\mu_{v i s C} * \omega_{\text {shaft }}
$$

where $\mu_{v i s c}$ is the viscous friction coefficient.

## Thermal Model

You can model the effects of heat flow and temperature change by exposing the optional thermal port. To expose the port, in the Friction settings, set the Thermal Port
parameter to Model. Exposing the port also exposes or changes the default value for these related settings, parameters, and variables:

- Friction > Temperature
- Friction > Static friction coefficient vector
- Friction > Coulomb friction coefficient vector
- Friction > Contact friction coefficient vector
- Thermal Port > Thermal mass
- Variables > Temperature


## Variables

Use the Variables settings to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

## Dependencies

Variable settings are visible only when, in the Friction settings, the Thermal port parameter is set to Model.

## Limitations and Assumptions

- Contact angles smaller than $45^{\circ}$ produce less accurate results.
- The brake uses the long-shoe approximation.
- The brake geometry does not self-lock.
- The model does not account for actuator flow consumption.


## Ports

## Input

## F - Actuating force

physical signal

Physical signal input port associated with the applied actuating force.

## Conserving

## S - Drum shaft rotation <br> rotational mechanical

Rotational conserving port associated with the rotating drum shaft.

## H - Heat flow

thermal
Thermal conserving port associated with heat flow.

## Dependencies

This port is visible only when, in the Friction settings, the Thermal Port parameter is set to Model.

Exposing this port makes related settings visible.

## Parameters

## Geometry

## Drum radius - Contact surface radius

150 mm (default) | positive scalar
Radius of the drum contact surface. The value must be greater than zero.

## Actuator location radius - Center-to-center distance between drum and force line of action

100mm (default) | positive scalar
Distance between the drum center and the force line of action. The value must be greater than zero.

## Pin location radius - Center-to-center distance between hinge pin and drum 125mm (default) | positive scalar

Distance between the hinge pin and drum centers. The parameter must be greater than zero.

## Pin location angle - Angular distance from hinge pin to brake symmetry axis

 15deg (default) | nonnegative scalarAngular coordinate of the hinge pin location from the brake symmetry axis. The value must be greater than or equal to zero.

## Shoe beginning angle - Angle between hings pin and friction material 5deg (default) | positive scalar

Angle between the hinge pin and the beginning of the friction material linen of the shoe. The value of the parameter must be in the range $0 \leq \theta_{\mathrm{sb}} \leq$ (п-pin location angle).

## Shoe span angle - Friction material angle 120deg (default) | positive scalar

Angle between the beginning and the end of the friction material linen on the shoe. The value of the parameter must be in the range $0<\theta_{\mathrm{sb}} \leq$ (п -pin location angle - shoe beginning angle).

## Friction

## Viscous friction coefficient - Viscous friction

 . $01 \mathrm{n} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | nonnegatvie scalarViscous friction coefficient at the contact surface. The value must be greater than or equal to zero.

## Thermal port - Thermal model <br> Omit (default) | Model

Model for heat flow and temperature change:

- Omit - Neglect thermal dynamics.
- Model - Include thermal dynamics.


## Dependencies

When this parameter is set to Model, thermal port $\mathbf{H}$ and related settings are visible.

## Temperature - Temperature <br> [280, 300, 320] K (default) | increasing vector

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right.

## Dependencies

This parameter is only visible when the Thermal Port parameter is set to Model.

## Contact friction coefficient - Coulomb friction

0.3 (default) | [0.1, $0.05,0.03]$ (thermal model default) | positive scalar or vector

Coulomb friction coefficient at the belt-drum contact surface. The value must be greater than zero. For the thermal model:

- The number of elements in the vector must be the same as the number of elements in the specified vector for the Temperature parameter
- The values increase left to right.
- Each value must be greater than zero.


## Dependencies

This parameter is specified as a:

- Scalar when the Thermal Port parameter is set to Omit.
- Vector when the Thermal Port parameter is set to Model.


## Angular velocity threshold - Rotational velocity required for near steadystate contact friction

$0.01 \mathrm{rad} / \mathrm{s}$ (default) | positive scalar
Angular velocity at which the contact friction coefficient practically reaches its steadystate value. The value must be greater than zero.

## Thermal Port

## Thermal mass - Resistance to temperature change <br> 50 kJ/K (default) | scalar

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

## Dependencies

This parameter is only visible when, in the Friction settings, the Thermal Port parameter is set to Model.

## Extended Capabilities

C/C++ Code Generation<br>Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

See Also<br>Band Brake | Loaded-Contact Rotational Friction | Rotational Detent<br>Topics<br>"Model Thermal Losses in Driveline Components"<br>Introduced in R2012b

## Double-Sided Synchronizer

Back-to-back dog-cone clutch pairs assembled symmetrically about a translational detent to provide smooth gear engagement
Library: Simscape / Driveline / Clutches


## Description

The block represents a double-sided synchronizer that contains two back-to-back dog clutches, two back-to-back cone clutches, and one translational detent. Shift linkage translation along the negative direction causes the clutches to engage the ring with hub A. Shift linkage translation along the positive direction causes the clutches to engage the ring with hub $B$. When the magnitude of the shift linkage translation is smaller than the cone clutch ring-hub gap, the synchronizer is in neutral mode and does not transmit torque.


The schematic illustrates a double-sided synchronizer in the disengaged state. In this state, the ring, $\mathbf{R}$, and hub, $\mathbf{H}_{\mathbf{A}}$ and $\mathbf{H}_{\mathbf{B}}$, shafts can spin independently at different speeds.

As the shift linkage, $\mathbf{S}$, translates in the negative direction, the faces of cone clutch $A$ $\left(\mathbf{C C}_{\mathbf{A}}\right)$ come into contact. The friction in the cone clutch decreases the difference in rotational speed between the shafts. When the force on the shift linkage exceeds the peak force of detent, $\mathbf{D}$, the dog clutch teeth, $\mathbf{T}$, can engage. The detent peak force should be such that the cone clutch has enough time and normal force to bring the shafts to sufficiently similar speeds to allow engagement of the dog clutch. Similarly, translating the shift linkage along the positive direction allows the faces of cone clutch $B\left(\mathbf{C C}_{\mathbf{B}}\right)$ to come into contact, and can allow the shaft of the ring to engage with the shaft of the hub $B\left(\mathbf{H}_{\mathbf{B}}\right)$.


The model implements two Dog Clutch blocks, two Cone Clutch blocks, and one Translational Detent block. Refer to each block reference page for more information on the corresponding block function.

Connections $\mathbf{R}, \mathbf{H}_{\mathbf{A}}$, and $\mathbf{H}_{\mathbf{B}}$ are mechanical rotational conserving ports that represent the ring, $\mathbf{R}$, hub $A\left(\mathbf{H}_{\mathbf{A}}\right)$, and hub $B\left(\mathbf{H}_{\mathbf{B}}\right)$, respectively. Connection $\mathbf{S}$ is a mechanical translational conserving port that represents the ring shifter handle.

Connections X1 and $\mathbf{X 2}$ are physical signal ports that output the shift linkage positions of the dog clutches and cone clutches, respectively. The tables provide the values of $X 1$ and $X 2$ in common clutch engagement cases.

Dog Clutch State	X1
Disengaged	0
Fully engaged with hub $A$	Negative sum of ring-hub gap and tooth   height
Fully engaged with hub B	Positive sum of ring-hub gap and tooth   height
Cone Clutch State	X2
Disengaged	0
Fully engaged with hub $A$	Negative value of ring-hub gap
Fully engaged with hub $B$	Positive value of ring-hub gap

The values of $X 1$ and $X 2$ are zero when the synchronizer is fully disengaged. When the dog clutch is fully engaged with hub $A, X 1$ is equal to the negative sum of its ring-hub gap and tooth height. When the dog clutch is fully engaged with hub $B, X 1$ is equal to the positive sum of its ring-hub gap and tooth height. When the cone clutch is fully engaged with hub $A, X 2$ is equal to the negative of its ring-hub gap. When the cone clutch is fully engaged with hub $B, X 2$ is equal to its ring-hub gap.

## Thermal Modeling

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, in the Clutch settings, select a temperature-dependent setting tor the Friction model parameter. Specify the associated thermal parameters for the component.

## Assumptions and Limitations

- The model does not account for inertia effects. You can add a Simscape Inertia block at each port to add inertia to the synchronizer model.


## Ports

## Output

## X1 - Dog clutch translation <br> physical signal

Physical signal output port that measures the magnitude of the dog clutch translation.

## X2 - Cone clutch translation

physical signal
Physical signal output port that measures the magnitude of the cone clutch translation.

## Conserving

## HA - Clutch hub A

mechanical rotational
Mechanical rotational conserving port associated with the clutch hub $A$ shaft.

## HB - Clutch hub B

mechanical rotational
Mechanical rotational conserving port associated with the clutch hub $B$ shaft.

## R - Clutch ring

mechanical rotational
Mechanical rotational conserving port associated with the clutch ring.

## S - Shift linkage <br> mechanical rotational

Mechanical rotational conserving port associated with shift linkage.

## T - Heat flow

thermal
Thermal conserving port associated with heat flow.

## Dependencies

This port is visible only if, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients.

## Parameters

The table shows how the specified options for parameters in both the Cone Clutch and Dog Clutch settings affect the visibility of:

- Parameters in the Cone Clutch, Dog Clutch, and Initial Conditions settings
- Thermal Port settings
- Thermal port T

To learn how to read the table, see "Parameter Dependencies" on page B-2.

Double-Sided Synchronizer Block Parameter Dependencies

Settings	Parameters and Options			
Cone Clutch	Contact surface maximum diameter			
	Contact surface minimum diameter			
	Cone half angle			
	Friction model			
	Fixed kinetic friction coefficient	Velocity-dependent kinetic friction coefficient	```Temperat ure- dependen t friction coeffici ents```	Temperat ure and velocity   dependen t   friction   coeffici ents
	-	-	Exposes:   - Conserv ing port T   - Therm al Port settings	Exposes:   - Conserv ing port T   - Therm al Port settings
	-	Relative velocity vector		Relative velocity vector
	-	-	Temperat ure vector	Temperat ure vector
	Static friction coefficient	Static friction coefficient vector	Static friction coefficient vector	Static friction coefficient matrix


Settings	Parameters and Options					
	Kinetic friction coefficient		Kinetic friction coefficient vector		Kinetic friction coefficient vector	Kinetic   friction   coefficient   matrix
			Friction coefficient interpolation method		Friction coefficient interpolat ion method	Friction coefficient interpolat ion method
			Friction coefficient extrapolation method		Friction coefficient extrapolat ion method	Friction coefficient extrapolat ion
	Velocity tolerance		Velocity tolerance		Velocity tolerance	Velocity tolerance
	Threshold force		Threshold force		Threshold force	Threshold force
$\begin{aligned} & \text { Dog } \\ & \text { Clutch } \end{aligned}$	Torque transmission model		Torque transmission model		-	
	Friction clutch approxim ation Suitable for HIL and lineariz ation	Dynamic with backlash	Friction clutch approxim ation Suitable for HIL and lineariz ation	Dynamic with backlash	-	-
	-	-	-	-	Temperat ure vector	Temperat ure vector
	Maximum transmitte d torque	-	Maximum transmitte d torque	-	Maximum transmitte d torque vector	Maximum transmitte d torque vector


Settings	Parameters and Options					
	-	-	-	-		$\begin{array}{\|c} \hline \text { Interpolat } \\ \text { ion } \\ \text { method } \end{array}$
	-	-	-	-	$\begin{array}{\|c\|} \hline \text { Extrapolat } \\ \text { ion } \\ \text { method } \end{array}$	Extrapolat ion method
	Clutch   teeth   mean   radius	Clutch   teeth   mean   radius	Clutch   teeth   mean   radius	Clutch teeth mean radius	Clutch   teeth   mean   radius	Clutch   teeth   mean   radius
	-	Number of teeth	-	Number of teeth		
		Rotational backlash		Rotational backlash		
	-	Torsional stiffness	-	Torsional stiffness		
	-	Torsional damping	-	Torsional damping		
	-	Toothtooth friction coefficient	-	Toothtooth friction coefficient		
InitialCondition$s$	Initial state					
	Dog clutch initial shift linkage position					


Settings	Parameters and Options					
	Cone clutch initial shift linkage position					
	-	Initial dog clutch $A$ ring-hub offset angle	-	Initial dog clutch A ring-hub offset angle	-	-
	-	Initial dog clutch B ring-hub offset angle	-	Initial dog clutch B ring-hub offset angle	-	-
Thermal Port	-	-	-	-	Thermal mass	Thermal mass
	-	-	-	-	Initial temperatu re	Initial temperatu re

## Cone Clutch

## Contact surface maximum diameter - Outer diameter

150 mm (default) | positive scalar
Outer conical diameter $d_{0}$.

## Contact surface minimum diameter - Inner diameter

100 mm (default) | positive scalar
Inner conical diameter $d_{i}$.

## Cone half angle - Cone half angle

12 deg (default) | positive scalar
Half opening angle $\alpha$ of the cone geometry.

## Friction model - Friction model

Fixed kinetic friction coefficient (default)|Velocity-dependent kinetic friction coefficient|Temperature-dependent friction coefficients| Temperature and velocity-dependent friction coefficients

Parameterization method to model the kinetic friction coefficient. The options and default values for this parameter depend on the friction model that you select for the block. The options are:

- Fixed kinetic friction coefficient - Provide a fixed value for the kinetic friction coefficient.
- Velocity-dependent kinetic friction coefficient - Define the kinetic friction coefficient by one-dimensional table lookup based on the relative angular velocity between disks.
- Temperature-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature.
- Temperature and velocity-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature and the relative angular velocity between disks.


## Dependencies

The friction model setting affects the visibility of other parameters, settings, and ports.
For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Relative velocity vector - Relative velocity [0, 100, 1000] rad/s (default)|vector

Input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

## Dependencies

This parameter is visible only if the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature and velocitydependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Temperature vector - Temperature <br> [280, 300, 320] K (default) |increasing vector

Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

## Dependencies

This parameter is visible only if the Friction model parameter is set to Temperaturedependent friction coefficients or Temperature and velocity-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Static friction coefficient - Static friction coefficient 0.35 (default) | scalar

Static or peak value of the friction coefficient. The static friction coefficient must be greater than the kinetic friction coefficient.

## Dependencies

this parameter is visible only if the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Static friction coefficient vector - Static friction coefficient [.4, .38, .36] (default)| vector

Static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

## Dependencies

This parameter is visible only if the Friction model parameter is set to Temperaturedependent friction coefficients or Temperature and velocity-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Kinetic friction coefficient - Kinetic friction coefficient 0.3 (default) | positve scalar

The kinetic, or Coulomb, friction coefficient. The coefficient must be greater than zero.

## Dependencies

This parameter is visible only if the Friction model parameter is set to Fixed kinetic friction coefficient.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Kinetic friction coefficient vector - Kinetic friction coefficient

 [.3, .22, .19] (default)|[.3, .28, .25]|vectorOutput values for kinetic friction coefficient as a vector. All values must be greater than zero.

If the Friction model parameter is set to

- Velocity-dependent kinetic friction coefficient - The vector must have same number of elements as relative velocity vector.
- Temperature-dependent friction coefficients - The vector must have the same number of elements as the temperature vector.


## Dependencies

This parameter is visible only if the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Kinetic friction coefficient matrix - Kinetic friction coefficient [.34, .32, .3; .3, . 28, . 25; .25, .2, .15] (default)|matrix

Output values for kinetic friction coefficient as a matrix. All the values must be greater than zero. The size of the matrix must equal the size of the matrix that is the result of the temperature vector $\times$ the kinetic friction coefficient relative velocity vector.

## Dependencies

This parameter is visible only if the Friction model parameter is set to Temperature and velocity-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Friction coefficient interpolation method - Interpolation method Linear (default)|Smooth

Interpolation method for approximating the output value when the input value is between two consecutive grid points:

- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Velocity-dependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Friction coefficient extrapolation method - Extrapolation method Linear (default) | Nearest | Error

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:

- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Velocity-dependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Velocity tolerance - Relative velocity locking threshold $0.001 \mathrm{rad} / \mathrm{s}$ (default) | scalar

Relative velocity below which the two surfaces can lock. The surfaces lock if the torque is less than the product of the effective radius, the static friction coefficient, and the applied normal force.

## Threshold force - Normal contact force threshold 1 N (default) | scalar

The normal force is applied only if the amount of force exceeds the value of the Threshold force parameter. Forces below the Threshold force are not applied so there is no transmitted frictional torque.

## Dog Clutch

The methods that are available for parameterizing the torque transmission depend whether the friction model is temperature-dependent.

The friction model is determined, in the Cone Clutch settings, by the Friction model parameter setting:

- Fixed kinetic friction coefficient - Temperature independent
- Velocity-dependent kinetic friction coefficient-Temperature independent
- Temperature-dependent friction coefficients - Temperature dependent
- Temperature and velocity-dependent friction coefficients Temperature dependent

For a temperature-independent model, parameterize the block using one of the options for the Torque Transmission Model parameter.

## Torque transmission model - Torque transmission model

Friction clutch approximation - Suitable for HIL and linearization (default)|Dynamic with backlash

Computational framework for modeling the dynamic behavior of the dog clutch:

- Friction clutch approximation - Suitable for HIL and linearization - Model clutch engagement as a friction phenomenon between the ring and the hub. This model, based on the Fundamental Friction Clutch block, provides a computationally efficient approximation of the dog clutch.
- Dynamic with backlash - Model clutch engagement in detail, accounting for such phenomena as backlash, torsional compliance, and contact forces between ring and hub teeth.


## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent friction coefficients.

The visibility of related parameters in the Dog Clutch and Initial Conditions settings is affected by the option that you select for this parameter.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Temperature vector - Temperature

[280, 300, 320] K (default) | increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

Maximum transmitted torque - Maximum transmitted torque<br>1000 N*m (default) | positive scalar

Largest torque that the clutch can transmit, corresponding to a nonslip engaged configuration. If the torque transmitted between the ring and the hub exceeds this value, the two components begin to slip with respect to each other. This torque determines the static friction limit in the friction clutch approximation

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in Dog Clutch settings, the Torque transmission model parameter is set to Friction clutch approximation - Suitable for HIL and linearization.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Maximum transmitted torque vector - Maximum transmitted torque [1000, 1050, 1000] N*m (default) | vector

Largest torque that the clutch can transmit, corresponding to a nonslip engaged configuration, specified as a vector. If the torque transmitted between the ring and the hub exceeds this value, the two components begin to slip with respect to each other. This torque determines the static friction limit in the friction clutch approximation. The vector has the same number of elements as the temperature vector.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent kinetic friction coefficient or Temperature and velocity-dependent kinetic friction coefficient.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Interpolation method - Interpolation method <br> Linear (default)| Smooth

Interpolation method for approximating the output value when the input value is between two consecutive grid points:

- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent kinetic friction coefficient or Temperature and velocity-dependent kinetic friction coefficient.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Extrapolation method - Extrapolation method Linear (default)|Nearest | Error

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:

- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent kinetic friction coefficient or Temperature and velocity-dependent kinetic friction coefficient.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Clutch teeth mean radius - Clutch teeth mean radius

50 mm (default) | positive scalar
Distance from the ring or hub center to the corresponding tooth center. The mean tooth radius determines the normal contact forces between ring and hub teeth given the transmission torque between the two components. The value must be greater than zero.

## Number of teeth - Number of ring or hub teeth 6 (default) | positive nonzero scalar integer

Total number of teeth in the ring or the hub. The two components have equal tooth numbers. The value must be greater than or equal to one.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Rotational backlash - Rotational backlash

10 deg (default) | positive scalar
Allowable angular motion, or play, between the ring and hub teeth in the engaged clutch configuration. The value must be greater than zero.

Dependencies
This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Torsional stiffness - Torsional stiffness

$10 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}$ (default) | positive scalar
Linear torsional stiffness coefficient at the contact interface between the ring and hub teeth. This coefficient characterizes the restoring component of the contact force between the two sets of teeth. Greater stiffness values correspond to greater contact forces. The value must be greater than zero. The default value is $10 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}$.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Torsional damping - Torsional damping <br> $100 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$ (default) | positive scalar

Linear torsional damping coefficient at the contact interface between the ring and hub teeth. This coefficient characterizes the dissipative component of the contact force between the two sets of teeth. Greater damping values correspond to greater energy dissipation during contact. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Tooth-tooth friction coefficient - Tooth-tooth contact kinetic friction coefficient

### 0.05 (default) | positive scalar

Kinetic friction coefficient at the contact interface between ring and hub teeth. This coefficient characterizes the dissipative force that resists shift linkage motion due to tooth-tooth contact during clutch engagement/disengagement.

Greater coefficient values correspond to greater energy dissipation during shift linkage motion. The value must be greater than zero.

## Dependencies

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Detent

## Peak force - Peak shear force

500 N (default) | nonnegative scalar

Peak shear force of the detent.

```
Notch width - Notch width
3 mm (default) | nonnegative scalar
```

Width of the region where the detent exhibits shear force.

## Viscous friction coefficient - Viscous friction coefficient $0.1 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$ (default) | nonnegative scalar

Viscous friction coefficient at the contact surface of the detent. The value must be greater than or equal to zero.

## Friction to peak force ratio - Friction to peak force ratio

0.01 (default) | nonnegative scalar

Ratio of the kinetic friction to the peak shear force of the detent. The parameter is used to set the value of the kinetic friction. The parameter must be greater than or equal to zero.

## Friction velocity threshold - Kinetic friction velocity threshold

 $0.05 \mathrm{~m} / \mathrm{s}$ (default)Velocity required for peak kinetic friction at the contact surface of the detent. The parameter ensures the force is continuous when the travel direction changes, increasing the numerical stability of the simulation. The parameter must be greater than zero. The default value is $0.05 \mathrm{~m} / \mathrm{s}$.

## Shift Linkage

Maximum engagement speed - Engagement speed upper velocity threshold inf (default) | positive scalar

Relative angular velocity between the ring and the hub above which the clutch cannot engage. The value is specific to the specific gearbox or transmission. Minimizing the value helps avoid high dynamic impact during engagement. The value must be greater than zero.

[^0]Overlap length between ring and hub teeth along the common longitudinal axis above which the clutch can engage. The clutch remains disengaged until the tooth overlap by at least this length. The value must be greater than zero.

## Tooth height - Tooth height

10 mm (default) | positive scalar
Distance between the base and crest of a tooth. Ring and hub teeth share the same height. The tooth height and the ring-hub clearance when fully disengaged determine the maximum travel span of the shift linkage. The value must be greater than zero.

## Ring-hub clearance when disengaged - Ring-hub clearance when disengaged 3 mm (default) | positive scalar

Maximum open gap between the ring and hub tooth crests along the shift linkage translation axis. This gap corresponds to the fully disengaged clutch state. The tooth height and the ring-hub clearance when fully disengaged determine the maximum travel span of the shift linkage. The value must be greater than zero.

## Hard stop at back of shift linkage - Hard stop model On (default) | Off

Hard stop that prevents the shift linkage from traveling beyond the fully disengaged position:

- On - Hard stop when fully disengaged.
- Off - No hard stop when fully disengaged.


## Dog clutch ring stop stiffness - Dog clutch ring stop stiffness

10e5 N/m (default) | positive scalar
Stiffness of the hard stops on both sides of the dog clutch ring. The model assumes the ring and stops behave elastically. Contact deformation is proportional to the applied force and the reciprocal of the contact stiffness. The value of the stiffness must be assigned with reference to the parameter Tooth overlap to engage. Too low a stiffness could cause the deformation to exceed the required overlap and initiate a false engagement. The parameter must be greater than zero.

[^1]Stiffness of the hard stops on both sides of the cone clutch ring. The model assumes the ring and stops behave elastically. Contact deformation is proportional to the applied force and the reciprocal of the contact stiffness.

## Dog clutch ring stop damping - Dog clutch ring stop damping

 le3 N/(m/s) (default) | nonegative scalarTranslational contact damping between the dog clutch ring and the hub. The value of the damping is inversely proportional to the number of oscillations that occur after impact. The parameter must be greater than zero.

## Cone clutch ring stop damping - Cone clutch ring stop damping

 le3 N/(m/s) (default) | nonegative scalarTranslational contact damping between the cone clutch ring and the hub. The value of damping is inversely proportional to the number of oscillations that occur after impact. The parameter must be greater than zero.

## Shift linkage viscous friction coefficient - Shift linkage viscous friction coefficient

$100 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$ (default) | positive scalar
Viscous friction coefficient for the relative translational motion between the hub and the ring. The value of the parameter depends on lubrication state and quality of contacting surfaces. The coefficient must be greater than or equal to zero.

## Initial Conditions

## Initial state - Initial clutch state

All clutches unlocked (default)|Cone clutch A and dog clutch A locked| Cone clutch A locked|Cone clutch B locked|Cone clutch B and dog clutch B locked

Beginning configuration of cone and dog clutches:

- Cone clutch A and dog clutch A locked - Cone clutch $A$ and $\operatorname{dog} \operatorname{clutch} A$ transmit torque between the ring and hub shafts.
- Cone clutch A locked - Cone clutch $A$ transmits torque between the ring and hub shafts.
- All clutches unlocked-Cone and dog clutches transmit zero torque between the ring and hub shafts.
- Cone clutch B locked - Cone clutch $B$ transmits torque between the ring and hub shafts.
- Cone clutch B and dog clutch B locked - Cone clutch B and dog clutch B transmit torque between the ring and hub shafts.


## Dog clutch initial shift linkage position - Dog clutch initial shift linkage position

0 mm (default) | scalar
Initial position of the shift linkage section that attaches to the dog clutch. The value of the parameter has these restrictions:

Dog Clutch State	Parameter Restriction
Dog clutch A Initially engaged	Negative of the parameter value must be   greater than the sum of parameters Ring-   hub clearance when dog clutch   disengaged and Tooth overlap to engage
Dog clutch A Initially disengaged	Negative of the parameter value must be   smaller than the sum of parameters Ring-   hub clearance when dog clutch   disengaged and Tooth overlap to engage
Dog clutch B Initially engaged	Parameter value must be greater than the   sum of parameters Ring-hub clearance   when dog clutch disengaged and Tooth   overlap to engage
Dog clutch B Initially disengaged	Parameter value must be smaller than the   sum of parameters Ring-hub clearance   when dog clutch disengaged and Tooth   overlap to engage

## Cone clutch initial shift linkage position - Cone clutch initial shift linkage position

0 mm (default) | scalar
Initial position of the shift linkage section that attaches to the cone clutch. The value of the parameter has these restrictions:

Cone Clutch State	Parameter Restriction
Cone clutch A initially engaged	Negative of parameter must be greater   than the value of Ring-hub clearance   when cone clutch disengaged
Cone clutch A initially disengaged	Negative of parameter must be smaller   than the value of Ring-hub clearance   when cone clutch disengaged
Cone clutch B initially engaged	Parameter must be greater than the value   of Ring-hub clearance when cone clutch   disengaged
Cone clutch B initially disengaged	Parameter must be smaller than the value   of Ring-hub clearance when cone clutch   disengaged

## Initial dog clutch A ring-hub offset angle - Initial dog clutch B ring-hub offset angle <br> 0 deg (default) | scalar

Rotation angle between the ring and the hub of $\operatorname{dog}$ clutch $B$ at simulation time zero. This angle determines whether the ring and hub teeth can interlock, and hence whether the clutch can engage. The initial offset angle must satisfy these conditions:

- If the clutch initial state is disengaged, the initial offset angle must fall in the range

$$
-\frac{180^{\circ}}{N} \leq \phi_{0} \leq+\frac{180^{\circ}}{N}
$$

where $N$ is the number of teeth present in the ring or the hub. The two components contain the same number of teeth.

- If the clutch initial state is engaged, the initial offset angle must fall in the range

$$
-\frac{\delta}{2} \leq \phi_{0} \leq+\frac{\delta}{2}
$$

where $\delta$ is the backlash angle between the ring and hub teeth.

## Dependencies

This parameter is only visible when both of these conditions are met:

- In the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient.
- In the Dog Clutch settings, the Torque transmission model is set to Dynamic with backlash.


## Initial dog clutch B ring-hub offset angle - Initial dog clutch A ring-hub offset angle <br> 0 deg (default) | scalar

Rotation angle between the ring and the hub at simulation time zero. This angle determines whether the ring and hub teeth can interlock, and hence whether the clutch can engage. The initial offset angle must satisfy these conditions:

- If the clutch initial state is disengaged, the initial offset angle must fall in the range

$$
-\frac{180^{\circ}}{N} \leq \phi_{0} \leq+\frac{180^{\circ}}{N}
$$

where $N$ is the number of teeth present in the ring or the hub. The two components contain the same number of teeth.

- If the clutch initial state is engaged, the initial offset angle must fall in the range

$$
-\frac{\delta}{2} \leq \phi_{0} \leq+\frac{\delta}{2}
$$

where $\delta$ is the backlash angle between the ring and hub teeth.

## Dependencies

This parameter is only visible when both of these conditions are met:

- In the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient.
- In the Dog Clutch settings, the Torque transmission model is set to Dynamic with backlash.


## Thermal Port

Thermal Port settings are visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or

Temperature and velocity-dependent friction coefficients. For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Thermal mass - Thermal mass

50 kJ/K (default) | scalar
Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

## Dependencies

This parameter is only visible when, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Initial temperature - Initial temperature 300 K (default) | scalar

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses.

## Dependencies

This parameter is only visible when, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Double-Sided Synchronizer Block Parameter Dependencies.

## Thermal Port

These thermal parameters are only visible when you select a temperature-dependent friction model.

## Thermal mass

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is $100 \mathrm{~kJ} / \mathrm{K}$.

## Initial temperature

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

## More About

## Linearization

To optimize your model for linearization, use the Dog Clutch > Torque transmission model parameter default setting, Friction clutch approximation - Suitable for HIL and linearization.

## Hardware-in-the-Loop Simulation

For optimal simulation performance, use the Dog Clutch > Torque transmission model parameter default setting, Friction clutch approximation - Suitable for HIL and linearization.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also

## Simscape Blocks

Cone Clutch | Dog Clutch | Synchronizer | Translational Detent

Topics<br>"Model Thermal Losses in Driveline Components"<br>"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

## Introduced in R2012b

## Flexible Shaft

Shaft with torsional and bending compliance
Library: Simscape / Driveline / Couplings \& Drives


## Description

The Flexible Shaft block represents a driveline shaft with torsional and bending compliance. The shaft consists of a flexible material that twists in response to an applied torque and bends in response to static mass unbalance. The twisting action delays power transmission between the shaft ends, altering the dynamic response of the driveline system.


To represent a torsion-flexible shaft, the block uses a lumped mass method. This model divides the shaft into different elements that interconnect through parallel spring damper systems. The elements provide the shaft inertia while the spring damper systems provide the shaft compliance.

The block provides four parameterization methods that allow you to model compliance in either a homogeneous or an axially inhomogeneous shaft. An axially inhomogeneous shaft is one for which any of these attributes vary along the length of the shaft:

- Torsional stiffness
- Torsional inertia
- Bending rigidity
- Density
- Shear modulus
- Young's modulus
- Outer diameter
- Inner diameter

An additional parameter enables you to model the power losses in the bearings due to viscous friction at the shaft ends. For more information, see "Torsion Model" on page 1207.

Note The viscous friction at the shaft ends is different from the internal material damping, which corresponds to losses arising in the shaft material itself.

To represent the bending-flexible shaft, the block uses either a lumped mass method or an eigenmodes method. While the lumped mass method is simpler to configure, the eigenmodes method tends to simulate faster.

Tip If simulation speed, is a high priority, first simulate using the lumped mass method, adjusting parameters as needed until the results match your mathematical models or experimental data. Next, simulate using the eigenmodes method. Again, adjust the parameters as needed until the results mathematical models or experimental data. For an example that uses both methods, see "Shaft with Torsional and Transverse Flexibility".

For the lumped mass method, the number of bending shaft elements is the same as the number of torsion shaft elements. The model divides the shaft into a series of such elements. The elements provide the shaft inertia, while the stiffness matrices provide the shaft compliance. The eigenmodes method computes effective mass-spring-damper systems that represent the bending modes of the shaft. You can specify the number of modes to include and the precision of the mode shapes. Both the lumped mass and eigenmodes methods allow you to model:

- Excitational static unbalances
- Concentrically attached rigid masses
- Up to four support locations along the shaft
- Linear damping proportional to shaft inertia
- Linear damping proportional to shaft stiffness

Note The eigenmodes method assumes that the support damping is light compared to support stiffness.

Static unbalances, which excite bending, occur when the center of mass of the shaft or an attached rigid mass is not aligned with the shaft principal axis. You can vary the locations, magnitudes, and angle offsets of static unbalances on the shaft.

You can represent concentrically attached rigid masses as disks or idealized point masses. A concentric disk adds diametric and polar moments of inertia to the shaft and mass to the translation degree of freedom of the shaft nodes. The model assumes that the disk is thin, so the shaft can still bend on either side of the axial location with the disk. The polar moment of inertia couples the two planes of bending. A concentric point mass is an idealized version of a concentric disk. A concentric point mass adds mass to the translation degrees of freedom of the shaft nodes but does not have rotational moments of inertia. You can vary the locations and inertias of concentric disks or point masses that are attached to the shaft.

You can model the supports as ideal or by using stiffness and damping matrices. For each support, you can vary the:

- Location - Any point along the shaft length.
- Type - Ideal clamp, ideal pin, free, constant bearing stiffness and damping, or speeddependent stiffness and damping.
- Number - Two, three, or four.

For both bending methods, you can specify the shaft bending compliance by using either bending rigidity and linear mass density or Young's modulus and shaft diameter.

You can parameterize the torsional model by using either stiffness $k$ and inertia $J$ or the dimensions and material properties of the shaft.

## Torsion Model

For the torsion model, the Flexible Shaft block approximates the distributed, continuous properties of a shaft by using a lumped mass method. The model contains a finite number, $N$, of lumped inertia-damped spring elements in series, plus a final inertia. The result is a series of $N+1$ inertias connected by $N$ rotational springs and $N$ rotational dampers.


The block models the shaft as an equivalent physical network of $N$ flexible elements. Each flexible element, $F E_{i}$, represents a short section of the driveshaft and contains:

- One spring, $k_{\text {FE }{ }^{i},}$ for torsional compliance. The network has a total of $N$ springs.
- One damper, $b_{\text {FE- }}$, for material damping. The network has a total of $N$ dampers.
- Two inertias, $I_{F E ~ i C}$ and $I_{F E}$ iR, for rotational resistance. The inertias of neighboring flexible elements are consolidated together so that the network has a total of $N+1$ inertias.

For an axially homogeneous shaft, the flexible element lengths, compliance, damping, and distributed inertias in the physical network are equal, such that:

$$
\begin{aligned}
& l_{F E_{-} 1}=l_{F E_{-} 2}=\cdots=l_{F E_{-} N}=\frac{L}{N} \\
& k_{F E_{-} 1}=k_{F E_{-} 2}=\cdots=k_{F E_{-} N}=k \\
& b_{F E_{-} 1}=b_{F E_{-} 2}=\cdots=b_{F E_{-} N}=b \\
& I_{F E_{-} 1 \mathrm{C}}=I_{F E_{-} 1 \mathrm{R}}=I_{F E_{-} 2 \mathrm{C}}=I_{F E_{-} 2 \mathrm{R}}=\cdots=I_{F E_{-} N \mathrm{C}}=I_{F E_{-} N \mathrm{R}}=\frac{I}{2 N}
\end{aligned}
$$

For an axially inhomogeneous shaft, the amount of compliance, damping, and $\mathbf{R}$-node and C-node inertia can differ for individual flexible elements in the physical network model.

## Node Placement Algorithm

The balance between model fidelity and simulation speed depends on $N$, the number of flexible elements that the block uses to represent the shaft. For information on balancing simulation speed and model fidelity, see "Improve Simulation Speed or Accuracy" on page 1-230.

The block allows you to specify a minimum number of flexible elements, $N_{\text {min }}$, as the value for the "Minimum number of flexible elements" on page 1-0 parameter. However, the number of flexible elements that the block actually uses depends on the complexity of the shaft that it is modeling. If the block requires more flexible elements than you specify to solve a model that contains axial inhomogeneity, intermediate supports, concentric disks or masses, or static unbalances, then $N \geq N_{\text {min }}$.

For example, suppose that, for the complex shaft in the diagram, you specify axial locations for the supports, static unbalance, larger diameter section, and concentric disk. You set the parameter for $N_{\min }$ to 7 .


If model bending is on, the torsion model flexible element locations account for the locations of static unbalances and concentric rigid masses, so that the torsion flexible elements align with the bending flexible elements. During simulation, the torsion model is independent of any static unbalances or concentric rigid masses.

The algorithm for the block determines the number of flexible elements and the length of the individual elements that are required to solve the simulation:

1 The block places one node at the base and follower ends of the shaft. These nodes are considered fixed in axial location because they represent physical entities along the shaft axis. In the diagram, fixed nodes are shown in red. The block evenly distributes the other five ( $N_{\text {min }}-2$ ) internal nodes along the length of the shaft. It then places a flexible element between each consecutive pair of nodes.


For an end-supported, axially homogenous shaft, with no static unbalances or attached concentric disks, depending on the other parameter options and values that you specify, the block might be able to solve the simulation using only $N_{\text {min }}$ flexible elements of equivalent lengths:
$l=\frac{L}{N_{\text {min }}}$

In most cases, however, the block can only solve the simulation if it adds more flexible elements.
2 To add more flexible elements, the block places fixed internal nodes at these locations:

- Each shaft support location. The block allows you to specify the number and location of shaft supports. For the shaft in the diagram, there are supports at $z_{1}$ and $z_{6}$.
- Each static unbalance. For the shaft in the diagram, there is a static unbalance at $z_{2}$.
- Each rigid mass. Rigid masses are concentrically attached disks or point masses. For the shaft in the diagram, there is a rigid mass, represented as a disk, at $z_{5}$.
- Each parameterization segment boundary. Parameterization boundaries are locations along an axially inhomogeneous shaft where two neighboring sections of the shaft vary in stiffness, inertia, or geometry. The block allows you to define the parameterization segment boundary locations. For the shaft in the diagram, there are segment boundaries at $z_{3}$ and $z_{4}$.


Note that the block did not add a node at $z_{4}$ because a node was already added in the previous step of the algorithm. However, the node is now fixed because it represents a physical entity along the shaft length.
3 The block adjusts the nonfixed node locations between the fixed nodes so that they are evenly distributed.


Finally, the block places flexible elements between each node. The length of each flexible element corresponds to the center-to-center distances between the neighboring nodes. The block distributes the inertia among the flexible elements based on the length of the individual element and the corresponding shaft geometry. Ultimately, this complex shaft is represented by 12 flexible elements, with $l_{1}=z_{1}$,
$l_{2}=l_{3}=\frac{\left(z_{2}-z_{1}\right)}{2}, l_{4}=l_{5}=\frac{\left(z_{3}-z_{2}\right)}{2}, l_{6}=l_{7}=\frac{\left(z_{4}-z_{3}\right)}{2}, l_{8}=l_{9}=\frac{\left(z_{5}-z_{4}\right)}{2}$, $l_{10}=l_{11}=\frac{\left(z_{6}-z_{5}\right)}{2}$, and $l_{12}=z_{7}-z_{6}$.


If $N_{\min }$ is large enough to yield a number of unfixed nodes that is greater than the number of fixed nodes, the block distributes more than one unfixed node between each set of neighboring fixed nodes.

## Dimensions and Material Properties

You can parameterize the torsion model by using either stiffness, $k$, and the polar moment of inertia, $J$, or the dimensions and material properties of the shaft.

The stiffness and inertia for each element are computed from the shaft dimensions and material properties as:

$$
\begin{aligned}
& J_{p}=\frac{\Pi}{32}\left(D^{4}-d^{4}\right) \\
& m=\frac{\Pi}{4}\left(D^{2}-d^{2}\right) \rho l \\
& J=\frac{m}{8}\left(D^{2}+d^{2}\right)=\rho l \cdot J p
\end{aligned}
$$

$$
k=J p \cdot \frac{G}{l}
$$

where:

- $J_{P}$ is the polar moment of inertia of the shaft at the flexible element location.
- $D$ is the outer diameter of the shaft at the flexible element location.
- $d$ is the inner diameter of the shaft at the flexible element location. For a solid shaft, $d=0$. For an annular shaft, $d>0$.
- $l$ is the flexible element length.
- $m$ is the mass of the shaft at the flexible element location.
- $J$ is the moment of inertia of the shaft at the flexible element location.
- $\rho$ is the density of the shaft material.
- $G$ is the shear modulus of elasticity of the shaft material.
- $k$ is the rotational stiffness of the flexible element.


## Internal Material Damping

For either torsional parameterization, the internal material damping is defined by the damping ratio, $c$, for a single-flexible element model with the equivalent torsional stiffness and inertia. The damping torque is then $2 \frac{c k}{\omega_{N}}$, while the undamped natural frequency is $\omega_{N}=\sqrt{\frac{2 k}{J}}$. The damping applied across an individual flexible element of a lumped mass model is equal to the product of the damping coefficient and the relative rotational velocity of that flexible element.

## Bending Models

The "Shaft Geometry, Support Loading, and Motion" on page 1-218 figure shows how to measure:

- The static unbalance offset angle, which is the angle of a static unbalance about the shaft axis relative to the $x$ axis
- The distances of a support, a rigid mass, and a static unbalance, relative to the base end of the shaft, $\mathbf{B}$
- The parameterization of the segment lengths

In the figure, the shaft has three fixed supports:
$1 \quad B_{1}$ - Base end support
$2 I_{1}$ - Intermediate support
$3 \quad F_{1}$ - Follower end support
The shaft has translational velocity $V$, rotational velocity $W$, and exerts forces $F$, and moments $M$, on the supports. The curved arrows and sign conventions follow the righthand rule. The signs of the physical signals that the block outputs correspond to the arrows that represent the forces, moments, and velocities of the shaft acting on the supports.

The vector signals are:

- Force, $F r=\left[F_{x B 1}, F_{y B 1}, F_{x I 1}, F_{y I 1}, F_{x F 1}, F_{y F 1}\right]$
- Moment, $M=\left[M_{x B 1}, M_{y B 1}, M_{x I 1}, M_{y I 1}, M_{x F 1}, M_{y F 1}\right]$
- Translational velocity, $V=\left[V_{x B 1}, V_{y B 1}, V_{x I 1}, V_{y I 1}, V_{x F 1}, V_{y F 1}\right]$
- Rotational velocity, $M=\left[M_{\chi B 1}, M_{y B 1}, M_{x I 1}, M_{y I 1}, M_{x F 1}, M_{y F 1}\right]$

If the shaft has two supports, each vector signal has a length of four. Force, for example, is then $F r=\left[F_{x B 1}, F_{y B 1}, F_{x F 1}, F_{y F 1}\right]$.

If the shaft has four supports, each vector signal has a length of eight. Force, for example, is then $F r=\left[F_{x B 1}, F_{y B 1}, F_{x I 1}, F_{y I 1}, F_{x I 2}, F_{y I 2}, F_{x F 1}, F_{y F 1}\right]$.


## Shaft Geometry, Support Loading, and Motion

## Bending Model Lumped Mass Method

Like the torsion model, the lumped mass method for the bending model discretizes the distributed, continuous properties of the shaft into a finite number, $N$, of flexible elements. The $N$ flexible elements correspond to $N+1$ lumped inertias connected in
series by damping and spring elements. However, for the bending model, each mass has four degrees of freedom: translation and rotation in both the $x$ and $y$ directions perpendicular to the shaft axis.


The lumped mass equation of motion ${ }^{[1]}$ is

$$
M \ddot{\vec{x}}+\left(B+G_{D i s k} \Omega\right) \dot{\vec{x}}+\left(K+G_{\text {Disk }} \dot{\Omega}\right) \vec{x}=\vec{f} .
$$

where:

- $\boldsymbol{M}$ is the $4(N+1) \times 4(N+1)$ matrix that represents the mass of the shaft.
- B is the $4(N+1) \times 4(N+1)$ matrix for the internal damping and support damping.
- $\boldsymbol{G}_{\text {Disk }}$ is the $4(N+1) \times 4(N+1)$ matrix that accounts for disk gyroscopics
- $\Omega$ is the shaft torsional velocity during simulation.
- $\boldsymbol{K}$ is the $4(N+1) \times 4(N+1)$ matrix for the spring stiffness.
- $\vec{x}$ is the $4(N+1) \times 1$ vector that represents the degrees of freedom for all nodes.
- $\vec{f}$ is the $4(N+1) \times 1$ vector that represents external forces due to the application of static mass unbalance.

The equation for the mass matrix [4] is

$$
M=M_{1 / 2}+M_{2 / 3}+\ldots M_{i / i+1}+\ldots M_{N / N+1}+\sum M_{d i s k, i}
$$

where:

- $M_{i /(i+1)}$ is the mass matrix for an individual flexible element. For each flexible element, half of the mass and moment of inertia is transferred to the nodes at both ends of the flexible element. The $M_{i /(i+1)}$ matrix has nonzero elements in the $(4 i-3):(4 i+4)$ rows and the $(4 i-3):(4 i+4)$ columns:

$$
M_{i /(i+1)}=\left[\begin{array}{ccccccccccc}
0 & & & & & & & & & & \\
& & \\
& \ddots & & & & & & & & & \\
\\
& & \frac{1}{2} m & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
& & 0 & \frac{1}{2} m & 0 & 0 & 0 & 0 & 0 & 0 & \\
& & 0 & 0 & I_{d} & 0 & 0 & 0 & 0 & 0 & \\
& 0 & 0 & 0 & I_{d} & 0 & 0 & 0 & 0 & \\
& 0 & 0 & 0 & 0 & \frac{1}{2} m & 0 & 0 & 0 & \\
& 0 & 0 & 0 & 0 & 0 & \frac{1}{2} m & 0 & 0 & \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & I_{d} \\
& & & & & & & & & & \\
& & & & & & & & & & 0
\end{array}\right] \text {, }
$$

where:

- $l$ is the flexible element length along the shaft between internal nodes. To determine the length of each flexible element, the block uses the algorithm that is described in "Node Placement Algorithm" on page 1-209. Each flexible element contains two inertias. Each inertia has two translational degrees of freedom, two rotational degrees of freedom, and one stiffness matrix.

Each flexible element in the equivalent physical model for bending in the XZ-plane (the beam translation in the $X$-direction and rotation about the $Y$-axis) and in the physical model for bending in the YZ-plane (the beam translation in the Y-direction and rotation about the X -axis) then contains two masses, two inertias, and a stiffness matrix.


To determine the internal node locations, and therefore the number and lengths of the flexible elements, the block uses the same node-placement algorithm as it uses for the torsion model. For more information, see "Node Placement Algorithm" on page 1-209.

- $m$ is the flexible element mass. $m$ depends on the outer, $D$, and inner, $d$, diameters, the density, $\rho$, of the shaft and the length of the flexible element, such that $m=\left(\frac{\pi}{4}\right)\left(D^{2}-d^{2}\right) \rho l$.
- $I_{d}$, the half-element mass moment of inertia about an axis perpendicular to the shaft axis, depends on the mass, $m$, length, $l$, and torsion moment of inertia, $J$, of the flexible element, such that $I_{d}=\frac{J}{4}+\frac{m}{6}\left(\frac{l}{2}\right)^{2}$.
- 

$\Sigma$$M_{\text {disk, } i}$ is the summed mass matrices of the rigid masses concentrically attached to the shaft.

- The mass properties of each rigid mass that is concentrically attached to the shaft are added to the closest node, $i$, such that

$$
M_{\text {disk, } i}([(4 i-3): 4 i],[(4 i-3): 4 i])=\left[\begin{array}{ccccc}
M_{\text {disk, }} & 0 & 0 & 0 \\
0 & M_{\text {disk, }} & 0 & 0 \\
0 & 0 & I_{D, \text { disk, } i} & 0 \\
0 & 0 & 0 & I_{D, \text { disk, } i}
\end{array}\right] \text {, }
$$

where $I_{D, \text { disk,i }}$ is the mass diametric moment of inertia about an axis perpendicular to the shaft for a rigid disk attached to the $i^{\text {th }}$ node. The model assumes that the disk is thin, so the shaft can still bend on either side of the axial location with the disk. A concentric point mass has $I_{D, d i s k, i}=0$.

The equation for the damping matrix is

$$
B=\alpha M+\beta K+B_{\text {support }}
$$

where:

- $\alpha$ is the damping constant proportional to mass.
- $\quad \beta$ is the damping constant proportional to stiffness.
- $\boldsymbol{B}_{\text {support }}$ is the damping coefficient at each support. For a support at the $i^{\text {th }}$ node, the damping matrix, in terms of global coordinates, is

$$
B_{\text {support }}([(4 \mathrm{i}-3): 4 \mathrm{i}],[(4 \mathrm{i}-3): 4 \mathrm{i}])=\left[\begin{array}{cccc}
b_{x x} & b_{x y} & 0 & 0 \\
b_{y x} & b_{y y} & 0 & 0 \\
0 & 0 & b_{\theta \theta} & 0 \\
0 & 0 & 0 & b_{\varphi \varphi}
\end{array}\right]
$$

where:

- $\left[\begin{array}{llll}b_{x x} & b_{x y} & b_{y x} & b_{y y}\end{array}\right]$ is the support translational damping.
- $\left[\begin{array}{ll}b_{\theta \theta} & b_{\varphi \varphi}\end{array}\right]$ is the support rotational damping.
- $G_{\text {disk, } i}$ accounts for the gyroscopic effects of any concentrically attached disks, and is defined as

$$
G_{\text {disk, } i}([(4 i-3): 4 i],[(4 i-3): 4 i])=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \Omega I_{P, \text { disk, } i} \\
0 & 0 & -\Omega I_{P, \text { disk, } i} & 0
\end{array}\right] \text {, }
$$

where $I_{P, d i s k, i}$ is the mass polar moment of inertia about the shaft axis for the disk attached to the $i^{\text {th }}$ node. The mass polar moment of inertia for a concentric point mass is $I_{P, \text { disk, } i}=0$.

The equation for the bearing stiffness matrix is

$$
K=K_{1 / 2}+K_{2 / 3}+\ldots+K_{N / N+1}+\sum K_{\text {support }}
$$

where:

- $K_{i / i+1}$ is the stiffness matrix for an individual shaft flexible element. The stiffness matrix for the $i^{\text {th }}$ shaft flexible element, between the $i^{\text {th }}$ and the $(i+1)^{\text {th }}$ nodes, has nonzero elements in the $(4 i-3):(4 i+4)$ rows and the $(4 i-3):(4 i+4)$ columns, such that

$$
K_{i / i+1}=\frac{2 E I}{l^{3}}\left[\begin{array}{cccccccccc}
0 & \ddots & & & & & & & & \\
\\
& 6 & 0 & 0 & 3 l & -6 & 0 & 0 & 3 l & \\
& 0 & 6 & -3 l & 0 & 0 & -6 & -3 l & 0 & \\
& 0 & -3 l & 2 l^{2} & 0 & 0 & 3 l & l^{2} & 0 & \\
& 3 l & 0 & 0 & 2 l^{2} & -3 l & 0 & 0 & l^{2} & \\
-6 & 0 & 0 & -3 l & 6 & 0 & 0 & -3 l & \\
0 & -6 & 3 l & 0 & 0 & 6 & 3 l & 0 & \\
0 & -3 l & l^{2} & 0 & 0 & 3 l & 2 l^{2} & 0 & \\
3 l & 0 & 0 & l^{2} & -3 l & 0 & 0 & 2 l^{2} & \\
& & & & & & & & & \ddots \\
\hline
\end{array}\right],
$$

where:

- $l$ is the flexible element length.
- $E I$ is the shaft rigidity.
- $\boldsymbol{K}_{\text {support }}$ is the stiffness at each support. For a support at the $i^{\text {th }}$ node, the stiffness matrix, in terms of global coordinates, is

$$
K_{\text {support }}([(4 \mathrm{i}-3): 4 \mathrm{i}],[(4 \mathrm{i}-3): 4 \mathrm{i}])=\left[\begin{array}{cccc}
k_{x x} & k_{x y} & 0 & 0 \\
k_{y x} & k_{y y} & 0 & 0 \\
0 & 0 & k_{\theta \theta} & 0 \\
0 & 0 & 0 & k_{\varphi \varphi}
\end{array}\right] \text {, }
$$

where:

- $\left[\begin{array}{llll}k_{x x} & k_{x y} & k_{y x} & k_{y y}\end{array}\right]$ is the support translational stiffness.
- $\left[\begin{array}{ll}k_{\theta \theta} & k_{\varphi \varphi}\end{array}\right]$ is the support rotational stiffness.

The support stiffness matrix, $K_{\text {support }}$, is nonzero only if you select Bearing matrix or Speed-dependent bearing matrix for the support. If you select the Clamped mounting type, the kinematic conditions of zero rotation and translation are applied to the degrees of freedom that correspond to the support node (B1,I1,I2, or F1). If you select the Pinned mounting type, the kinematic conditions of zero translation are applied to the translational degrees of freedom that correspond to the support node (B1,I1, I2, or F1).

The table includes the boundary conditions applied to the lumped mass nodes with supports.

Support Type	Boundary Condition for the Lumped   Mass Equation
Clamped	$x_{i}=0, \quad y_{i}=\quad 0, \quad \theta_{i}=\quad 0$,   $\varphi_{i}=\quad 0$
Pinned	$x_{i}=0, \quad y_{i}=0$
Bearing Matrix	$K_{\text {support }}$ is nontrivial.


Support Type	Boundary Condition for the Lumped Mass Equation
Speed-dependent bearing matrix	$K_{\text {support }}$ is nontrivial and depends on shaft rotation speed. At each time step, $K_{\text {support }}$ is calculated as: $\begin{aligned} & K_{\text {Support }}(\Omega)=\text { lookup( }\left\|\Omega_{\text {Ref }}\right\|, \\ & K_{\text {Support, }} \text { Ref, } \quad \Omega, \quad \text { interpolation } \\ & =\text { linear, } \quad \text { extrapolation }=\text { nearest }) \text {, } \end{aligned}$   where:   - $\Omega_{\text {Ref }}$ is the bearing speed, as specified, in the Supports settings, for the Bearing speed [s1,...,sS] parameter.   - For each support, $K_{\text {Support,Ref }}$ is the bearing speed-dependent translational stiffness, which you specify in the Supports settings.   - The lookup table uses linear interpolation and nearest extrapolation for the shaft rotation speed.

The matrix that represents the degrees of freedom for all nodes, $\vec{x}$, is calculated such that the degrees of freedom for the $i^{\text {th }}$ and the $(i+1)^{\text {th }}$ nodes are

$$
\vec{x}=\left[\begin{array}{c}
\vdots \\
x_{i} \\
y_{i} \\
\theta_{i} \\
\varphi_{i} \\
x_{i+1} \\
y_{i}+1 \\
\theta_{i+1} \\
\varphi_{i}+1 \\
\vdots
\end{array}\right]
$$

External forces due to each static mass unbalance are applied to the closest node. The forcing at the $i^{\text {th }}$ node is

$$
\left.\begin{array}{l}
\vec{f}_{4(i-1: i-2)}= \\
{\left[\begin{array}{lrl}
m \varepsilon_{j, o f f s e t}\left(\Omega^{2}{ }_{i} \cos \left(\varphi_{\text {shaft }, i}+\varphi_{o f f s e t, j}\right)\right. & +\frac{\partial \Omega_{i}}{\partial t} & \sin \left(\varphi_{\text {shaft }, i}+\varphi_{o f f s e t, j}\right) \\
m \varepsilon_{j, \text { offset }}\left(\Omega^{2}{ }_{i} \sin \left(\varphi_{\text {shaft }, i}+\varphi_{\text {offset, }}\right)\right. & -\frac{\partial \Omega_{i}}{\partial t} & \cos \left(\varphi_{\text {shaft, } i}+\varphi_{o f f s e t, j}\right)
\end{array}\right)}
\end{array}\right] .
$$

where:

- $m \varepsilon_{j}$ is the $j^{\text {th }}$ static unbalance, located at the $i^{\text {th }}$ node.
- $\Omega_{\mathrm{i}}$ is the shaft rotational velocity during simulation for the $i^{\text {th }}$ node.
- $\varphi_{\text {shaft }, i}$ is the torsion lumped mass rotation angle for the $i^{\text {th }}$ node.


## Bending Model Eigenmodes Method

For the eigenmodes method, the block reduces the bending dynamics from the $4(N+1)$ degrees of freedom that the bending model lumped mass method provides, to $M$ degrees of freedom, where $M$ is the number of modes.

The block computes the bending mode properties of the shaft during model compilation, then solves the modal mass-spring-damper systems during model simulation.

Reducing the degrees of freedom in the model dynamics and separating the calculations into compile-time and run-time tasks improves simulation performance. The eigenmodes method assumes the mode shapes are unaffected by damping. Therefore, the method is best suited to models that include limited disk gyroscopic and support damping.

During compilation, the block computes the approximate damped eigenmodes using these steps:

1 The block computes the matrices using the same lumped mass equation of motion that it uses for the bending model lumped mass method:

$$
M \ddot{\vec{x}}+\left(B+G_{D i s k} \Omega\right) \dot{\vec{x}}+\left(K+G_{D i s k} \dot{\AA}\right) \vec{x}=\vec{f}
$$

For more information, see "Bending Model Lumped Mass Method" on page 1-218.
When determining the node axial locations for $\vec{x}$, the block uses one of two variations of the "Node Placement Algorithm" on page 1-209 that it uses for the torsion model and the bending model lumped mass method. The variation that the block uses depends on whether, in the Advanced Bending settings, the Bending mode determination parameter is set to Simscape determined or to User defined.

If the Bending mode determination parameter is set to Simscape determined, instead of using the Minimum number of flexible elements parameter for $N_{\text {min }}$, as the lumped mass methods do, the eigenmodes method calculates $N_{\min }$ as
$N_{\text {Min, Eig }}=\operatorname{round}\left(\frac{L}{d z}\right)$,
where:

- $L$ is the specified value, in the Shaft settings, for the Shaft length parameter.
- $d z$ is the specified value, in the Advanced Bending settings, for the Shaft length increments for mode shape computations parameter.

To compute the $m$ undamped eigenmodes and eigenfrequencies, the block uses the eigs function. The equation takes the form :

```
[H, \lambda] = eigs(sparse(K), sparse(M), mMax, 'smallestabs'),
```

where:

- $\boldsymbol{H}$ is the $4(N+1) \times M$ eigenvector matrix. Each column is an eigenmode in the $\vec{\chi}$ coordinates.
- $\lambda$ are the eigenvalues, which are the square of the eigenfrequencies.
- $m_{\text {Max }}$ is the specified value, in the Advanced Bending settings, for the Limit number of modes parameter.

The number of eigenmodes computed, $m$, is less than $m_{\text {Max }}$ if:

- There are modes with eigenfrequencies that exceed the specified value, in the Advanced Bending settings, for the Eigenfrequency upper limit parameter. The block discards these modes.
- The eigenvalues fail to converge. For more information, see eigs.

If the Bending mode determination parameter is set to User defined, the block computes the eigenvector matrix $\boldsymbol{H}$ from the specified values, in the Advanced Bending settings, for these parameters:

- X-direction mode shapes
- Y-direction mode shapes
- Shaft position

To determines the node axial locations for $\vec{x}$, the block uses the elements specified for the Shaft position parameter as the primary nodes.

To compute the modal rotation, $\theta$ and $\varphi$, for each node, the block uses the gradient function. The equations take the form:

```
0 = -gradient(Y direction mode shapes)
\varphi = ~ g r a d i e n t (X ~ d i r e c t i o n ~ m o d e ~ s h a p e s)
```

The block assembles the $\mathbf{X}$-direction mode shapes, $\mathbf{Y}$-direction mode shapes, and modal rotations, $\theta$ and $\varphi$, into $\vec{x}$ coordinates for each column of $\boldsymbol{H}$.
2 The block computes the modal matrices, $\boldsymbol{M}_{\text {Modal }}, \boldsymbol{K}_{\text {Modal }}, \boldsymbol{B}_{\text {Modal }}, \boldsymbol{G}_{\text {Modal }}$, and $f_{\text {Modal }}$, as:

$$
\begin{aligned}
& M_{\text {Modal }}=H^{T} M H \\
& K_{\text {Modal }}=H^{T} K H \\
& B_{\text {Modal }}=H^{T} B H
\end{aligned}
$$

$$
\begin{aligned}
& G_{\text {Modal }}=H^{T} G_{\text {Disk }} H \\
& \vec{f}_{\text {Modal }}=H^{T} \vec{f}
\end{aligned}
$$

Although the block computes undamped eigenmodes, $\boldsymbol{H}$, in step 1, the modal damping matrix, $\boldsymbol{B}_{\text {Modal }}$, and modal gyroscopics matrix, $\boldsymbol{G}_{\text {Modal }}$, may model light damping. The block normalizes the matrices so that $\boldsymbol{M}_{\text {Modal }}$ is the identity matrix.

During simulation, the block simulates the eigenmode equation of motion:

$$
M_{\text {Modal }} \ddot{\vec{\eta}}+\left(B_{\text {Modal }}+G_{\text {Modal }} \Omega\right) \dot{\vec{\eta}}+\left(K_{\text {Modal }}+G_{\text {Modal }} \dot{\Omega}\right) \vec{\eta}=\vec{f}_{\text {Modal }},
$$

where the modal degrees of freedom, $\vec{\eta}$, relate to the node degrees of freedom by:

$$
\vec{x}=H \vec{\eta}
$$

## Speed-Dependent Eigenmodes Method

The support stiffness and support damping vary if, in the Supports settings, the mounting type parameter for any of the supports is set to Speed-dependent bearing matrix. The speed-dependent eigenmodes model accounts for these effects by varying the modal properties, $\boldsymbol{H}, \boldsymbol{B}_{\text {Modal }}, \boldsymbol{K}_{\text {Modal }}$, and $f_{\text {Modal }}$ as the shaft speed changes. $\boldsymbol{M}_{\text {Modal }}$ is normalized to the identity matrix for all shaft speeds, so it does not depend on shaft speed.

If the shaft has speed-dependent bearing supports, then the block repeats the bending mode eigenmodes method steps for each element in the shaft speed vector. The shaft vector elements are the specified values, in the Supports settings, for the Bearing speed [s1,...,sS] parameter. During simulation, the modal stiffness, damping, and forcing magnitude are adjusted based on lookup tables of the properties versus the shaft speed.

That is, the block simulates the eigenmode equation of motion as:

$$
M_{\text {Modal }} \ddot{\vec{\eta}}+\left(B_{\text {Modal }}(\Omega)+G_{\text {Modal }} \Omega\right) \dot{\vec{\eta}}+\left(K_{\text {Modal }}(\Omega)+G_{\text {Modal }} \dot{\Omega}\right) \vec{\eta}=\vec{f}_{\text {Modal }}(\Omega)
$$

where $\boldsymbol{K}_{\text {Modal }} \boldsymbol{B}_{\text {Modal }}$, and $f_{\text {Modal }}$ have the form:

$$
\begin{gathered}
K_{\text {Modal }}(\Omega)=\text { lookup }\left(\left|\Omega_{\text {Ref }}\right|, \quad K_{\text {Modal, Ref }}, \quad \Omega, \quad\right. \text { interpolation = linear, } \\
\text { extrapolation }=\text { nearest })
\end{gathered}
$$

$$
\begin{array}{clll}
\begin{array}{c}
B_{\text {Modal }}(\Omega)=\text { lookup }\left(\left|\Omega_{\text {Ref }}\right|,\right. \\
\text { extrapolation = nearest }),
\end{array} & B_{\text {Modal, Ref }}, & \Omega, & \text { interpolation = linear, } \\
\vec{f}_{\text {Modal }}(\Omega)=\text { lookup }\left(\left|\Omega_{\text {Ref }}\right|,\right. & \vec{f}_{\text {Modal, Ref }}, & \Omega, & \text { interpolation = linear, } \\
\text { extrapolation }=\text { nearest }),
\end{array}
$$

where:

- $\Omega_{\text {Ref }}$ is the specified value, in the Supports settings, for the Bearing speed [s1,...,sS] parameter.
- $\boldsymbol{K}_{\text {Modal,Ref }}$ is the table of modal stiffnesses at each $\Omega_{\text {Ref }}$.
- $B_{\text {Modal,Ref }}$ is the table of support damping at each $\Omega_{\text {Ref }}$.
- $\boldsymbol{f}_{\text {Modal,Ref }}$ is the table of modal forcing at each $\Omega_{\text {Ref. }}$.

The block correlates the mode shape similarity at different values of $\Omega_{\text {Ref }}$ and reorders modes, if necessary, so that each modal degree of freedom, $\vec{\eta}$, has properties that gradually change with the shaft speed.

## Improve Simulation Speed or Accuracy

The balance between simulation accuracy and performance depends on $N$, the number of flexible elements that the block uses to represent the shaft. Simulation accuracy is a measure of how much the simulation results agree with mathematical and empirical models. Generally, as $N$ increases, so does model fidelity and simulation accuracy. However, the computational cost of the simulation is also correlated to $N$, and as computational cost increases, performance decreases. Conversely, as $N$ decreases, simulation speed increases but simulation accuracy decreases.

To increase simulation accuracy for the lumped mass method for either a torsion or bending model, increase the minimum number of flexible elements, $N_{\min }$. The single-flexible-element torsion model exhibits a torsional eigenfrequency that is close to the first eigenfrequency of the continuous, distributed parameter model. For greater accuracy you can select $2,4,8$, or more flexible elements. For example, the four lowest torsional eigenfrequencies are represented with an accuracy of $0.1,1.9,1.6$, and 5.3 percent, respectively, by a 16 -flexible-element model.

To increase simulation accuracy for the eigenmodes method to a bending model:

- If simulating with static eigenmode dependency on rotation speed, verify that the Nominal shaft speed for bending modes parameter is close to the simulation shaft speed. This parameter may affect model results if you parameterize a rigid disk attached to the shaft with a large mass moment of inertia about the shaft axis or specify any speed-dependent bearing matrix supports.
- If simulating with dynamic eigenmode dependency on rotation speed, verify that, in the Supports settings, the specified values for the Bearing speed [s1,...,sS] span the shaft speed range of the simulation or that saturation of the support stiffness and damping at shaft speeds outside the range is an acceptable approximation.
- In the Advanced Bending settings, decrease the value of the Shaft length increments for mode shape computations parameter. Reducing the value can increase the accuracy of modal frequencies and shapes.
- Decrease the support damping and disk polar moment of inertia about the shaft axis. Simscape computations of the mode shapes and frequencies before simulation do not account for this damping.
- Check the sensitivity to the Advanced Bending settings by using your parameters in the flexible shaft model in the "Shaft with Torsional and Transverse Flexibility" example. Adjust the parameters and use the links provided in the example to examine how the values affect the eigenmode frequencies and shapes. Adjust the parameter values in your model accordingly.
- Increase the values of the Eigenfrequency upper limit and Limit number of modes parameters. The highest modal frequency in the simulation must be significantly larger than the shaft rotation frequency.


## Limitations and Assumptions

- The distributed parameter model of a continuous torsional shaft is approximated by a finite number, $N$, of lumped masses.
- Shaft rotation and torsion flexibility excite shaft bending, but bending does not affect shaft rotation and torsion flexibility.
- Rigid point masses or disks attached to the shaft have thin lengths parallel to the shaft axis.
- For the eigenmodes bending model, damping does not affect the eigenfrequencies.
- Shaft bending is not transmitted between Flexible Shaft blocks.
- Relative to the shaft length, the shaft outer diameter is small.
- Relative to the shaft length, the bending deflection is small.
- Static mass unbalances are the only shaft-bending external exciting loads.
- Shaft supports are stationary.
- Gyroscopic effects of the rigid disks are considered; gyroscopic effects of the shaft itself are neglected.
- Static mass unbalance forcing in the eigenmodes method uses the rotation speed at the shaft midpoint.
- If the shaft models torsion only and uses the parameterization options By stiffness and inertia or By segment stiffness and inertia, the block uses only two supports, one each at the $\mathbf{B}$ and $\mathbf{F}$ ends.


## Ports

## Output

## Fr - Force on bearing supports

physical signal
Physical signal outport associated with the force that the shaft exerts on the bearing supports.

## Dependencies

This port is visible if, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## M - Moment on bearing supports

physical signal
Physical signal outport associated with the moment that the shaft exerts on the bearing supports.

## Dependencies

This port is visible if, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

V - Shaft translational velocity<br>physical signal

Physical signal outport associated with the translational velocity of the shaft at the bearing supports.

## Dependencies

This port is visible if, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## W - Shaft angular velocity

physical signal
Physical signal outport associated with the angular velocity of the shaft at the bearing supports.

## Dependencies

This port is visible if, in the Shaft settings, the Model bending parameter is set to 0n. For more information, see "Model bending" on page 1-0

## Conserving

## B - Base

rotational mechanical
Rotational conserving port associated with the shaft base.

## F - Follower

rotational mechanical
Rotational conserving port associated with the shaft follower.

## Parameters

## Shaft

For certain parameters in the Shaft settings, the option that you choose affects the visibility of:

- Other parameters in the Shaft settings.
- Parameters in the Torsion settings.
- Supports settings and parameters.
- Bending settings
- Advanced Bending settings
- These output ports:
- Fr
- M
- V
- W

The table shows how the options that you choose for the Shaft settings affect the visibility of other parameters in the Shaft settings. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Shaft Parameter Dependencies

Shaft Setting Parameters and Values							
Model bending							
Off				On			
Minimum number of flexible elements				Minimum number of flexible elements			
Parameterization				Parameterization			
By stiffne ss and inertia	```By materia l and geometr y```	By segment stiffne ss and inertia	By   materia   $l$ and segment geometr y	By   stiffne   ss and inertia	```By materia l and geometr y```	By segment stiffne ss and inertia	```By materia l and segment geometr y```
	Shaft Length		Segment lengths$[B, \ldots, F]$	Shaft Length	Shaft Length	Segment lengths $[B, \ldots, F]$	Segment lengths $[B, \ldots, F]$
Torsiona 1 stiffness		Segment torsional stiffness [B,...,F]		Torsiona 1 stiffness		Segment torsional stiffness $[\mathrm{B}, . ., \mathrm{F}]$	
Torsiona l inertia		Segment torsional inertia$[B, \ldots, F]$		Torsiona 1 inertia		Segment torsional inertia [B,...,F]	
				Bending rigidity		Segment bending rigidity [B,...,F]	
	Material density		Material density	Linear density	Material density	Segment linear	Material density
	Shear modulus		Shear modulus		Shear modulus	density   [B,...,F]	Shear modulus
					Young's modulus		Young's modulus



## Model bending - Bending model option

Off (default) | On
Option to model shaft bending.

## Dependencies

These parameters, settings, and ports are affected by the Model bending parameter.

- For the Shaft settings, the visibility of dependent parameters is tabulated in Shaft Parameter Dependencies.
- In the Torsion settings:
- The Viscous friction coefficients at base (B) and follower (F) parameter is visible if, in the Shaft settings, Model bending is set to Off and Parameterization is set to By stiffness and inertia or By segment stiffness and inertia.
- The Viscous friction coefficients at each support [B1,...,F1] parameter is visible if, in the Shaft settings, one of these conditions is met:
- Model bending is set to On.
- Model bending is set to Off and Parameterization is set to By material and geometry or By material and segment geometry.
- These settings are exposed only if Model bending is set to On:
- Supports
- Bending
- Advanced bending
- These ports are exposed only if Model bending is set to $0 n$ :
- Fr
- M
- V
- W


## Minimum number of flexible elements - Minimum number of flexible elements <br> 1 (default) | positive integer

Minimum number of flexible elements, $N_{\text {min }}$, for the approximation.
It is possible that the flexible elements have different lengths or that the simulated number of flexible elements, $N$, is larger than $N_{\text {min }}$. For more information, see "Node Placement Algorithm" on page 1-209.

A larger number of flexible elements, $N$, increases the fidelity of the model, but reduces simulation performance. The single flexible element model ( $N=1$ ) exhibits a torsion eigenfrequency that is close to the first eigenfrequency of the continuous, distributed parameter model.

If model fidelity is more important than performance, select $2,4,8$, or more flexible elements. For example, the four lowest torsion eigenfrequencies are represented with an accuracy of $0.1,1.9,1.6$, and 5.3 percent, respectively, by a model with 16 flexible elements. Generally, more flexible elements are required for accurately modeling bending dynamics than are required for accurately modeling torsion dynamics.

For more information, see "Improve Simulation Speed or Accuracy" on page 1-230.

## Parameterization - Parameterization method

By stiffness and inertia (default)|By material and geometry|By segment stiffness and inertia|By material and segment geometry

Parameterization method. You can model a homogeneous shaft or one that is axially inhomogeneous for any of these attributes:

- Torsional stiffness
- Torsional inertia
- Bending rigidity
- Density
- Shear modulus
- Young's modulus
- Outer diameter
- Inner diameter

The parameterization options for a homogeneous shaft model are:

- By stiffness and inertia - Specify the torsional stiffness and inertia, and the density per unit length of the shaft. For the bending model, also specify the bending rigidity and length of the shaft.
- By material and geometry - Specify the length and axial cross-sectional geometry, in terms of inner and outer diameters, of the shaft. For the shaft material, specify the density and shear modulus. For the bending model, also specify Young's modulus for the material of the shaft.

The parameterization options for an axially inhomogeneous shaft model are:

- By segment stiffness and inertia - For each segment of the shaft, specify the torsional stiffness, torsional inertia, and density per unit length. For the bending model, also specify the bending rigidity and length for each segment.
- By material and segment geometry - For each segment of the shaft, specify the length and axial cross-sectional geometry, in terms of inner and outer diameters. For the material of the shaft, specify the density and shear modulus. For the bending model, also specify Young's modulus for the material of the shaft.


## Dependencies

Each Parameterization option affects the visibility of:

- Dependent parameters in the Shaft settings. For more information, see Shaft Parameter Dependencies.
- Dependent parameters in the Torsion settings:
- The Viscous friction coefficients at base (B) and follower (F) parameter is visible if, in the Shaft settings, Model bending is set to Off and Parameterization is set to By stiffness and inertia or By segment stiffness and inertia.
- The Viscous friction coefficients at each support [B1,...,F1] parameter is visible if, in the Shaft settings, one of these conditions is met:
- Model bending is set to 0 n .
- Model bending is set to Off and Parameterization is set to By material and geometry or By material and segment geometry.
- The Supports settings. When the Model bending parameter is set to Off, the Supports settings are visible when the Parameterization parameter is set to By material and geometry or By material and segment geometry.


## Shaft length - Shaft length

1 m (default) | positive scalar
Length of the shaft.

## Dependencies

This parameter is visible when one of these conditions are met:

- Model bending is set to Off and Parameterization is set to By material and geometry.
- Model bending is set to On and Parameterization is set to By material and geometry or By stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Segment lengths [B,...,F] - Length of each shaft segment

 [1, .5, .25] (default) | vectorLength of each shaft segment that the shaft is divided into lengthwise for modeling an axially inhomogeneous shaft. The number of elements in the vector is equal to the number of segments that you use to model the inhomogeneous shaft. The order of the elements in the vector corresponds to the segment order relative to $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible when one of these conditions are met:

- Parameterization is set to By material and segment geometry.
- Model bending is set to On and Parameterization is set to By segment stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Torsional stiffness - Material stiffness

2e5 N*m/rad (default) | positive scalar
Torque per radian twist of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

```
Segment torsional stiffness [B,...,F] - Material stiffness for each shaft segment
[400000, 200000, 100000] N*m/rad (default) | positive vector
```

Torque per radian twist for each segment of the shaft. The number of elements in the vector must be the same as the number of elements specified for the Segment lengths [ $\mathbf{B}, \ldots, \mathbf{F}$ ] on page 1-0 parameter. The order of the elements in the vector corresponds to the segment order relative to $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By segment stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Torsional Inertia - Polar moment of inertia

$0.02 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$ (default) | positive scalar
Ability of the shaft to resist torsional acceleration.

## Dependencies

This parameter is visible when Parameterization is set to By stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Segment torsional inertia [B, ..., F] - Polar moment of inertia for each shaft segment <br> [.025, .02, .015] kg*m^2 (default) | positive vector

Ability of the each shaft segment to resist torsional acceleration. The number of elements in the vector must be the same as the number of elements specified for the Segment lengths [B,...,F] on page 1-0 parameter. The order of the elements in the vector corresponds to the segment order relative to, $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By segment stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

```
Bending rigidity - Bending rigidity
5e5 m^4*Pa (default) | positive scalar
```

Bending rigidity for the shaft material.

## Dependencies

This parameter is visible when Model bending is set to 0 n and Parameterization is set to By stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Segment bending rigidity [B,...,F] - Bending rigidity of each segment [600000, 500000, 400000] m^4*Pa (default) | positive vector

Bending rigidity for the material of each sequential segment of the shaft. The number of elements in the vector must be the same as the number of elements specified for the Segment lengths [B,...,F] on page 1-0 parameter. The order of the elements in the vector corresponds to the segment order relative to $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible when Model bending is set to On and Parameterization is set to By segment stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Linear density - Density per unit length

$19 \mathrm{~kg} / \mathrm{m}$ (default) | positive scalar
Density of the shaft material per unit length of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

```
Segment linear density [B,...,F] - Density per unit length for each segment
```

```
[20, 19, 18] kg/m (default) | positive vector
```

Density of the shaft material per unit length of each segment of the shaft. The number of elements in the vector must be the same as the number of elements specified for the

Segment lengths [B,...,F] on page 1-0 parameter. The order of the elements in the vector corresponds to the segment order relative to $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By segment stiffness and inertia.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Material density - Material density

$7.8 \mathrm{e} 3 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$ (default) | positive scalar
Density of the shaft material.

## Dependencies

This parameter is visible when Parameterization is set to By material and geometry or By material and segment geometry.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Shear modulus - Shear modulus

## $7.93 e 9 \mathrm{~Pa}$ (default) | positive scalar

Shear modulus for the shaft material.

## Dependencies

This parameter is visible when Parameterization is set to By material and geometry or By material and segment geometry.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Young's modulus - Young's modulus <br> 200e9 Pa (default) | positive scalar

Young's modulus for the material.

## Dependencies

This parameter is visible when Model bending is set to On and Parameterization is set to By material and geometry or By material and segment geometry.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Shaft geometry - Cross-sectional geometry Solid (default) | Annular

Cross-sectional geometry along the length of the shaft. If the shaft or segments of the shaft are hollow, select Annular. Otherwise, select Solid.

## Dependencies

This parameter is visible when Parameterization is set to By material and geometry or By material and segment geometry.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Shaft outer diameter - Outer diameter of the shaft

0.075 m (default) | positive scalar

Outer diameter of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By material and geometry.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Segment outer diameter [B,...,F]-Outer diameter for each shaft segment

 [.085, . 075, .065] m (default) | positive vectorOuter diameter of each shaft segment. The number of elements in the vector must be the same as the number of elements specified for the Segment lengths [B,...,F] on page 10 parameter. The order of the elements in the vector corresponds to the segment order relative to $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible when Parameterization is set to By material and segment geometry.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Shaft inner diameter - Inner diameter of the shaft

0.05 m (default) | positve scalar

Inner diameter of the annular shaft. The value must be smaller than the value specified for the Shaft outer diameter parameter.

## Dependencies

This parameter is visible when Parameterization is set to By material and geometry and Shaft geometry is set to Annular.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Segment inner diameter [B,...,F] - Inner diameter for each shaft segment [.055, .05, .045] m (default)|vector

Inner diameters of the shaft segments. The number of elements in the vector must be the same as the number of elements specified for the Segment lengths [B,...,F] on page 10 parameter. The order of the elements in the vector corresponds to the segment order relative to $\mathbf{B}$, the base end of the shaft. Each value must be smaller than the corresponding value specified for the Segment outer diameter [B,..,F] parameter. If a shaft segment is solid, specify 0 for the corresponding vector element. At least one element in the vector must be positive.

## Dependencies

This parameter is visible when Parameterization is set to By material and segment geometry and Shaft geometry is set to Annular.

For more information on how other parameters affect the visibility of this parameter, see Shaft Parameter Dependencies.

## Torsion

## Damping ratio from internal losses - Material damping ratio

 0.01 (default) | positive scalarMaterial damping ratio.

## Viscous friction coefficients at base (B) and follower (F) - Viscous friction coefficients

## [0, 0] N*m/(rad/s) (default) | nonnegative vector

Viscous friction coefficients at the base, B, and follower, F, ends of the shaft. The vector must contain two elements.

## Dependencies

This parameter is visible if, in the Shaft settings, Model bending is set to Off and Parameterization is set to By stiffness and inertia or By segment stiffness and inertia.

```
Viscous friction coefficients at each support [B1,...,F1] - Viscous friction coefficients
```

```
[0, 0] N*m/(rad/s) (default)| nonnegative vector
```

```
[0, 0] N*m/(rad/s) (default)| nonnegative vector
```

Viscous friction coefficients at each support. The number of elements in the vector must be the same as the number specified in the Supports settings for the Number of supports on page 1-0 parameter. The order of the elements must correspond to the sequential position of each support $\mathbf{B}$, the base end of the shaft.

## Dependencies

This parameter is visible if, in the Shaft settings, one of these conditions is met:

- Model bending is set to On.
- Model bending is set to Off and Parameterization is set to By material and geometry or By material and segment geometry.


## Initial shaft torsional deflection - Initial shaft torsional deflection 0 rad (default) | nonnegative scalar

Angular deflection of the shaft at the start of simulation.

A positive initial deflection results in a positive rotation of $\mathbf{B}$, the base end of the shaft, relative to $\mathbf{F}$, the follower end of the shaft.

## Initial shaft angular velocity - Initial angular velocity 0 rpm (default) | nonnegative scalar

Angular velocity of the shaft at the start of simulation.

## Supports

The Supports settings are visible if, in the Shaft settings, one of these conditions is met:

- Model bending is set to Off and Parameterization is set to By material and geometry or By material and segment geometry.

For this condition, only these parameters in the Supports settings are visible:

- Number of supports
- Support locations relative to base (B)
- Model bending is set to On.

The visibility of the Supports settings depends on the values of several parameters in the Supports settings.

In the Supports settings, if the Number of supports parameter is set to 2, only mounting types and the dependent parameters for the B1 and F1 supports are visible. The $B 1$ support is the support that is closest to $\mathbf{B}$, the base end of the shaft. The F1 support is the support that is closest to $\mathbf{F}$, the follower end of the shaft. If Number of supports is set to a value greater than 2, the mounting type and dependent parameters are exposed for the intermediate supports, $\mathbf{I}_{\mathbf{N}}$, where $N$ is the number of intermediate supports. For example, for 3 supports, the mounting type and dependent parameters for the B1, I1, and F1 support are exposed.

These tables show the parameter dependencies for the Lumped Mass and Eigenmodes bending vibration analysis methods for each mounting type. The parameters are visible for the B1 and F1 supports and for any intermediate supports, I1 and I2, that you specify. The names of the dependent parameters are prefixed by the name of the corresponding support. For example, for the B1 support, the dependent parameter Rotational damping [ $\mathbf{x x}, \mathbf{y y}$ ] is named Base (B1) rotational damping [xx,yy]. The parameter prefixes are:

- Base (B1)
- Intermediate (I1)
- Intermediate (I2)
- Follower (F1)
- Mounting Type Parameter Dependencies

Supports Mounting Types and Dependent Parameters				
Clamped	Pinned	Free	Bearing matrix	Speeddependent bearing matrix
-	$\begin{gathered} \text { Rotational } \\ \text { damping } \\ {[x x, y y]} \end{gathered}$	Rotational damping [xx,yy]	Rotational damping [xx,yy]	Rotational damping [xx,yy]
			$\begin{aligned} & \text { Translational } \\ & \text { damping } \\ & {[\mathrm{xx}, \mathrm{xy}, \mathrm{yx}, \mathrm{yy}]} \end{aligned}$	Speed- dependent translational damping [xx1,xy1, yx1,yy1;...xxS, xyS,yxS,yyS]
			Rotational stiffness [xx,yy]	$\begin{gathered} \text { Rotational } \\ \text { stiffness } \\ {[x x, y y]} \end{gathered}$
			$\begin{aligned} & \text { Translational } \\ & \text { stiffness } \\ & \text { [xx,xy,yx,yy] } \end{aligned}$	Speed- dependent translational stiffness [xx1,xy1,yx1, yy1;..xxS,xyS, yxS,yyS]
				Bearing speed [s1, ...,sS]

Number of supports - Number of supports
2 (default) | 3 | 4

Number of shaft supports.

## Dependencies

This parameter is visible if, in the Shaft settings, one of these conditions is met:

- Model bending is set to Off and Parameterization is set to By material and geometry or By material and segment geometry
- Model bending is set to On.

If this parameter is set to:

- 2 - Parameters for the $B 1$ and $F 1$ supports are exposed. The $B 1$ support is the support that is closest to $\mathbf{B}$ the base end of the shaft. The F1 support is the support that is closest to $\mathbf{F}$, the follower end of the shaft.
- 3 - Parameters for the B1, I1, and F1 supports are exposed.
- 4 - Parameters for the B1, I1, I2, and F1 supports are exposed.


## Support locations relative to base (B) - Support locations [0, 1] m (default) | nonnegative increasing vector

Support locations relative to B, the base end of the shaft. The number of elements must be the same as the number specified for the Number of supports parameter. The order of the elements corresponds to the sequential position of each support relative to the base end of the shaft. The largest value must be no larger than the length of the shaft. For a segmented shaft model, the shaft length is equal to the sum of the individual segment lengths.

## Dependencies

This parameter is visible if, in the Shaft settings, one of these conditions is met:

- Model bending is set to Off and Parameterization is set to By material and geometry or By material and segment geometry
- Model bending is set to On.


## Base (B1) mounting type - Support B1 mounting type

 Clamped (default)|Pinned|Free|Bearing matrix|Speed-dependent bearing matrixType of mounting at the base end of the shaft.

## Dependencies

This parameter is visible when, in the Shaft settings the Model bending parameter is set to On. For more information, see Shaft Parameter Dependencies.

Setting this parameter to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix exposes related parameters. For more information, see Mounting Type Parameter Dependencies.

Base (B1) rotational damping [xx,yy] - Support B1 rotational damping [1e3, 1e3] N*m/(rad/s) (default) |vector

Rotational damping for the $B 1$ support. $B 1$ is the support that is closest to $\mathbf{B}$, the base end of the shaft. The elements of the two-element vector are:

- $x x$ - Damping about the $x$-axis
- $y y$ - Damping about the $y$-axis


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Base (B1) mounting type is set to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.

Base (B1) translational damping [ $x x, x y, y x, y y$ ] - Support B1 translational damping
[2e4, -4.4e4, -4.4e4, 3.5e5] N/(m/s) (default)|vector
Translational damping for the B1 support. The elements of the four-element vector are:

- $x x$ - Damping in the $x$-axis direction
- $x y$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction
- yy - Damping in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Base (B1) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Base (B1) speed-dependent translational damping

 [xx1,xy1,yx1,yy1; ...xxS,xyS,yxS,yyS] - Support B1 speed-dependent translational damping[2e4, -4.4e4, -4.4e4, 3.5e5; 1e4, -2.5e4, -2.5e4, 1.4e5; 5e3, -1.0e4, -1.0e4, 2.0e4] N/(m/s) (default)| matrix

Speed-dependent translational damping for the B1 support. The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [s1, ... sS] parameter. Each row contains four elements:

- $x x_{s}$ - Damping in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Damping in the $y$-axis direction at the $s^{\text {th }}$ speed


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Base (B1) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.

Base (B1) rotational stiffness [xx,yy] - Support B1 rotational stiffness [1e4, 1e4] N*m/rad (default) | nonnegative vector

Rotational stiffness for the B1 support. The elements of the two-element vector are:

- $x x$ - Stiffness about the $x$-axis
- $y y$ - Stiffness about the $y$-axis


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Base (B1) mounting type is set to Bearing matrix or Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Base (B1) translational stiffness [xx, xy,yx,yy] - Support B1 translational stiffness <br> [1e6, -2e5, -3e5, 5e] N/m (default)| vector

Translational stiffness for the B1 support. The elements of the four-element vector are:

- $x x$ - Stiffness in the $x$-axis direction
- $x y$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction
- $y y$ - Stiffness in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Base (B1) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.

```
Base (B1) speed-dependent translational stiffness
[xx1,xy1,yx1,yy1; ...xxS,xyS,yxS,yyS] - Support B1 speed-dependent
translational stiffness
[1e6, -6e5, -3.5e6, 8e6; le6, -2e5, -3.0e6, 5e6; le6, -5e4, -2.5e6,
3e6] N/m (default) | matrix
```

Speed-dependent translational stiffness for the B1 support. The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [ $\mathbf{s 1}, \ldots \mathbf{s S}$ ] parameter. Each row contains four elements:

- $x x_{s}$ - Stiffness in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Stiffness in the $y$-axis direction at the $s^{\text {th }}$ speed

All $x x$ and $y y$ stiffness values must be positive. All $x y$ and $y x$ values must be zero or nonzero at all speeds.

## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Base (B1) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I1) mounting type - Support I1 mounting type

Clamped (default)|Pinned|Free|Bearing matrix|Speed-dependent bearing matrix

Type of mounting at the I1 support. The I1 support is the closest intermediate support to the $B 1$ support.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Supports settings, Number of supports is set to 3 or 4 .

Setting this parameter to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix exposes related parameters. For more information, see Mounting Type Parameter Dependencies.

## Intermediate (I1) rotational damping [xx,yy] - Support II rotational damping

[1e3, 1e3] N*m/(rad/s) (default)| vector

Rotational damping for the I1 support. The elements of the two-element vector are:

- $x x$ - Damping about the $x$-axis
- $y y$ - Damping about the $y$-axis


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 3 or 4 .
- Intermediate (I1) mounting type is set to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I1) translational damping [xx, xy,yx,yy] - Support I1 translational damping <br> [2e4, -4.4e4, -4.4e4, 3.5e5] N/(m/s) (default)|vector

Translational damping for the I1 support. The elements of the four-element vector are:

- $x x$ - Damping in the $x$-axis direction
- $x y$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction
- yy - Damping in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 3 or 4 .
- Intermediate (I1) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I1) speed-dependent translational damping [xx1,xy1,yx1,yy1; ...xxsS,xyS,yxS,yyS] - Support II speed-dependent translational damping <br> ```[2e4, -4.4e4, -4.4e4, 3.5e5; 1e4, -2.5e4, -2.5e4, 1.4e5; 5e3, \\ -1.0e4, -1.0e4, 2.0e4] N/(m/s) (default)| matrix```

Speed-dependent translational damping for the I1 support. The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [s1, ... sS] parameter. Each row contains four elements:

- $x x_{s}$ - Damping in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Damping in the $y$-axis direction at the $s^{\text {th }}$ speed


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 3 or 4.
- Intermediate (I1) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I1) rotational stiffness [xx,yy] - Support I1 rotational stiffness <br> [1e4, 1e4] N*m/rad (default) | nonnegative vector

Rotational stiffness for the I1 support. The elements of the two-element vector are:

- $x x$ - Stiffness about the $x$-axis
- $y y$ - Stiffness about the $y$-axis


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 3 or 4 .
- Intermediate (I1) mounting type is set to Bearing matrix or Speeddependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I1) translational stiffness [xx, xy,yx,yy] - Support II translational stiffness <br> [1e6, -2e5, -3e5, 5e] N/m (default) | vector

Translational stiffness for the I1 support. The elements of the four-element vector are:

- $x x$ - Stiffness in the $x$-axis direction
- $x y$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction
- $y y$ - Stiffness in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 3 or 4 .
- Intermediate (I1) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.

Intermediate (I1) speed-dependent translational stiffness [xx1, xy1, yx1, yy1; ...xxS, xyS ,yxS,yyS] - Support II speed-dependent translational stiffness
[1e6, -6e5, -3.5e6, 8e6; 1e6, -2e5, -3.0e6, 5e6; 1e6, -5e4, -2.5e6, 3e6] N/m (default) | matrix

Speed-dependent translational stiffness for the I1 support. The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [ $\mathbf{s 1}, \ldots \mathbf{s S}$ ] parameter. Each row contains four elements:

- $x x_{s}$ - Stiffness in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Stiffness in the $y$-axis direction at the $s^{\text {th }}$ speed

All $x x$ and $y y$ stiffness values must be positive. All $x y$ and $y x$ values must be zero or nonzero at all speeds.

## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 3 or 4 .
- Intermediate (I1) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I2) mounting type - Support 12 mounting type

Clamped (default)|Pinned|Free|Bearing matrix|Speed-dependent bearing matrix

Type of mounting at the I2 support. The I2 support is located between the I1 and F1 supports.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Supports settings, Number of supports is set to 4 .

Setting this parameter to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix exposes related parameters. For more information, see Mounting Type Parameter Dependencies.

## Intermediate (I2) rotational damping [xx,yy] Support 12 rotational damping

## [1e3, 1e3] N*m/(rad/s) (default) | vector

Rotational damping for the I2 support. The elements of the two-element vector are:

- $x x$ - Damping about the $x$-axis
- $y y$ - Damping about the $y$-axis


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 4 .
- Intermediate (I2) mounting type is set to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Intermediate (I2) translational damping [xx, xy, yx, yy] - Support 12 translational damping

```
[2e4, -4.4e4, -4.4e4, 3.5e5] N/(m/s) (default)|vector
```

Translational damping for the I2 support. The elements of the four-element vector are:

- $x x$ - Damping in the $x$-axis direction
- $x y$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction
- yy - Damping in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 4 .
- Intermediate (I2) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.

```
Intermediate (I2) speed-dependent translational damping
[xx1,xy1,yx1,yy1; ...xxS,xyS,yxS,yyS] - Support I2 speed-dependent
translational damping
[2e4, -4.4e4, -4.4e4, 3.5e5; 1e4, -2.5e4, -2.5e4, 1.4e5; 5e3,
-1.0e4, -1.0e4, 2.0e4] N/(m/s) (default)| matrix
```

Speed-dependent translational damping for the I2 support. The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [s1, ... sS] parameter. Each row contains four elements:

- $x x_{s}$ - Damping in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Damping in the $y$-axis direction at the $s^{\text {th }}$ speed


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 4.
- Intermediate (I2) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.

Intermediate (I2) rotational stiffness [xx,yy] - Support I2 rotational stiffness
[1e4, 1e4] N*m/rad (default) | nonnegative vector
Rotational stiffness for the I2 support. The elements of the two-element vector are:

- $x x$ - Stiffness about the $x$-axis
- yy - Stiffness about the $y$-axis

Dependencies
This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 4 .
- Intermediate (I2) mounting type is set to Bearing matrix or Speeddependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.

Intermediate (I2) translational stiffness [xx, xy, yx, yy] - Support 12 translational stiffness
[1e6, -2e5, -3e5, 5e] N/m (default) | vector
Translational stiffness for the I2 support. The elements of the four-element vector are:

- $x x$ - Stiffness in the $x$-axis direction
- $x y$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction
- $y y$ - Stiffness in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 4 .
- Intermediate (I2) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.

```
Intermediate (I2) speed-dependent translational stiffness
[xx1,xy1,yx1,yy1; ...xxS,xyS,yxS,yyS] - Support l2 speed-dependent
translational stiffness
[1e6, -6e5, -3.5e6, 8e6; 1e6, -2e5, -3.0e6, 5e6; 1e6, -5e4, -2.5e6,
3e6] N/m (default) | vector
```

Speed-dependent translational stiffness for the I2 support. The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [s1, ... sS] parameter. Each row contains four elements:

- $x x_{s}$ - Stiffness in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Stiffness in the $y$-axis direction at the $s^{\text {th }}$ speed

All $x x$ and $y y$ stiffness values must be positive. All $x y$ and $y x$ values must be zero or nonzero at all speeds.

## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings:
- Number of supports is set to 4 .
- Intermediate (I2) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Follower (F1) mounting type - Support F1 mounting type

Clamped (default)|Pinned|Free|Bearing matrix|Speed-dependent bearing matrix

Type of mounting at the follower end of the shaft.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see Shaft Parameter Dependencies.

Setting this parameter to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix exposes related parameters. For more information, see Mounting Type Parameter Dependencies and Mounting Type Parameter Dependencies.

## Follower (F1) rotational damping [xx,yy] - Support F1 rotational damping

 [1e3, 1e3] $N * m /(\mathrm{rad} / \mathrm{s})$ (default) | vectorRotational damping for the F1 support, which is the support that is located closest to $\mathbf{F}$, the follower end of the shaft. The elements of the two-element vector are:

- $x x$ - Damping about the $x$-axis
- $y y$ - Damping about the $y$-axis


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Follower (F1) mounting type is set to Pinned, Free, Bearing matrix, or Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.

```
Follower (F1) translational damping [xx, \(x y, y x, y y]\) - Support F1 translational damping
```

```
[2e4, -4.4e4, -4.4e4, 3.5e5] N/(m/s) (default)|vector
```

Translational damping for the F1 support, which is the support that is closest to $\mathbf{F}$, the follower end of the shaft. The elements of the four-element vector are:

- $x x$ - Damping in the $x$-axis direction
- $x y$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction
- yy - Damping in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Follower (F1) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies.

Follower (F1) speed-dependent translational damping [xx1, xy1, yx1, yy1; ...xxS, xyS, yxS, yyS] - Support F1 speed-dependent translational damping
[2e4, -4.4e4, -4.4e4, 3.5e5; 1e4, -2.5e4, -2.5e4, 1.4e5; 5e3, -1.0e4, -1.0e4, 2.0e4] N/(m/s) (default)| matrix

Speed-dependent translational damping for the F1 support, which is the support that is closest to $\mathbf{F}$, the follower end of the shaft.

The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed [s1, ... sS] parameter. Each row contains four elements:

- $x x_{s}$ - Damping in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Damping in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Damping in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Damping in the $y$-axis direction at the $s^{\text {th }}$ speed


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Follower (F1) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies.


## Follower (F1) rotational stiffness [xx,yy] - Support F1 rotational stiffness <br> [1e4, 1e4] N*m/rad (default) | nonnegative vector

Rotational stiffness for the F1 support, which is the support that is closest to $\mathbf{F}$, the follower end of the shaft. The elements of the two-element vector are:

- $x x$ - Stiffness about the $x$-axis
- yy - Stiffness about the $y$-axis

Dependencies
This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Follower (F1) mounting type is set to Bearing matrix or Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies and Mounting Type Parameter Dependencies.


## Follower (F1) translational stiffness [xx, xy,yx,yy] - Support F1 translational stiffness <br> [1e6, -2e5, -3e5, 5e] N/m (default)| vector

Translational stiffness for the F1 support, which is the support that is closest to $\mathbf{F}$, the follower end of the shaft. The elements of the four-element vector are:

- $x x$ - Stiffness in the $x$-axis direction
- $x y$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction
- $y x$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction
- $y y$ - Stiffness in the $y$-axis direction


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Follower (F1) mounting type is set to Bearing matrix. For more information, see Mounting Type Parameter Dependencies and Mounting Type Parameter Dependencies.

Follower (F1) speed-dependent translational stiffness [xx1, xy1,yx1, yy1; ...xxS, xyS, yxS, yyS] - Support F1 speed-dependent translational stiffness<br>[1e6, -6e5, -3.5e6, 8e6; 1e6, -2e5, -3.0e6, 5e6; 1e6, -5e4, -2.5e6, 3e6] N/m (default) | matrix

Speed-dependent translational stiffness for the F1 support, which is the support that is closest to $\mathbf{F}$, the follower end of the shaft.

The number of rows in the matrix must equal the number of elements in the vector specified for the Bearing speed $[\mathbf{s 1}, \ldots \mathbf{s S}]$ parameter. Each row contains four elements:

- $x x_{s}$ - Stiffness in the $x$-axis direction at the $s^{\text {th }}$ speed
- $x y_{s}$ - Stiffness in the $x$-axis direction coupled with motion in the $y$-axis direction at the $s^{\text {th }}$ speed
- $y x_{s}$ - Stiffness in the $y$-axis direction coupled with motion in the $x$-axis direction at the $s^{\text {th }}$ speed
- $y y_{s}$ - Stiffness in the $y$-axis direction at the $s^{\text {th }}$ speed

All $x x$ and $y y$ stiffness values must be positive. All $x y$ and $y x$ values must be zero or nonzero at all speeds.

## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, Follower (F1) mounting type is set to Speed-dependent bearing matrix. For more information, see Mounting Type Parameter Dependencies and Mounting Type Parameter Dependencies.


## Bearing speed [s1, ...,sS] - Support bearing rotational speed

 [200, 500, 1500] rpm (default) | nonnegative vectorSupport bearing rotational speed.

## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, Model bending is set to On. For more information, see Shaft Parameter Dependencies.
- In the Support settings, at least one of these parameters is set to Speed-dependent bearing matrix:
- Base (B1) mounting type
- Intermediate (I1) mounting type
- Intermediate (I2) mounting type
- Follower (F1) mounting type

For more information, see Mounting Type Parameter Dependencies and Mounting Type Parameter Dependencies.

## Bending

The Bending settings are visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

The table shows how, in the Bending settings, the specified value for the Rigid masses concentrically attached to shaft parameter affects the visibility of related parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Rigid Masses Concentrically Attached to Shaft Parameter Dependencies

Rigid Masses Concentrically Attached to Shaft		
None	Point mass	Disk
-	Rigid mass   distances from   base (B)	Rigid mass distances from base (B)
	Rigid masses	Rigid masses
	Rigid mass diametric moments of   inertia about axis perpendicular to   shaft	
	Rigid mass polar moments of inertia   about shaft axis	

Damping constant proportional to mass - Damping constant $\alpha$
10 1/s (default) | positive scalar
Damping constant, $\alpha$, proportional to mass.
When the eigenmodes bending model is enabled, a translation damper in each modal mass-spring-damper system has the damping coefficient $a M_{\text {Mode }}$, where $M_{\text {Mode }}$ is the modal mass.

When the lumped mass bending model is enabled, a damping matrix, $\alpha \boldsymbol{M}$ is added to the system. $\boldsymbol{M}$ is the equation of motion mass matrix.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## Damping constant proportional to stiffness - Damping constant $\beta$

 1e-8 s (default) | positive scalarDamping constant, $\beta$, proportional to stiffness.
When the lumped mass bending model is enabled, a damping matrix, $\beta \boldsymbol{K}$ is added to the system. $\boldsymbol{K}$ is the equation of motion stiffness matrix. When the eigenmodes bending model is enabled, a damping $\beta \boldsymbol{K}_{\text {Modal }}$ is added to the system.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## Rigid masses concentrically attached to shaft - Type of rigid masses attached to shaft <br> None (default) | Point mass | Disk

Type, if any, of rigid masses attached to shaft.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

The specified value for this parameter affects the visibility of related parameters. For more information, see Rigid Masses Concentrically Attached to Shaft Parameter Dependencies.

## Rigid mass distances from base (B) - Rigid mass locations along shaft in distance from base node

0.5 m (default) | nonnegative scalar or vector

Rigid mass locations along the shaft in distance from $\mathbf{B}$, the base end of the shaft. For multiple masses, specify an increasing row vector. The number of elements in the vector must be equal to the number of masses that are attached to the shaft. The value of the
scalar or, for multiple masses, the largest value in the vector must not exceed the length of the shaft.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Bending settings, the Rigid masses concentrically attached to shaft parameter is set to Point mass or Disk. For more information, see Rigid Masses Concentrically Attached to Shaft Parameter Dependencies.


## Rigid masses - Mass of rigid masses concentrically attached to shaft

 2 kg (default) | positive scalar or vectorMass of rigid masses concentrically attached to shaft. For multiple masses, specify a row vector. The number and order of the elements in the vector must correspond to the elements in the vector specified for the Rigid mass distances from base (B) parameter.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0 .
- In the Bending settings, the Rigid masses concentrically attached to shaft parameter is set to Point mass or Disk. For more information, see Rigid Masses Concentrically Attached to Shaft Parameter Dependencies.

Rigid mass diametric moments of inertia about axis perpendicular to shaft - Diametric moments of inertia about axis perpendicular to shaft $0.025 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$ (default) | positive scalar or vector

Rigid mass moments of inertia about the axis perpendicular to the shaft. For multiple masses, specify a row vector. The number and order of elements in the vector must correspond to the elements in the vector specified for the Rigid mass distances from base (B) parameter.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Bending settings, the Rigid masses concentrically attached to shaft parameter is set to Disk. For more information, see Rigid Masses Concentrically Attached to Shaft Parameter Dependencies.


## Rigid mass polar moments of inertia about shaft axis - Polar moments of inertia about shaft axis

$0.050 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$ (default) | positive scalar or vector
Rigid polar mass moments of inertia about the principle shaft axis. For multiple masses, specify a row vector. The number and order of the elements in the vector must correspond to the elements in the vector specified for the Rigid mass distances from base (B) parameter.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0.
- In the Bending settings, the Rigid masses concentrically attached to shaft parameter is set to Disk. For more information, see Rigid Masses Concentrically Attached to Shaft Parameter Dependencies.


## Static unbalances that excite bending - Excitational static unbalances

[.01, .01] m*kg (default) | nonnegative vector
Static unbalances that excite bending.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## Static unbalance distances from base (B) - Static unbalance distances from base <br> [.33, .67] m (default) | nonnegative vector

Distance of excitational static unbalances from B, the base end of the shaft.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## Static unbalance offset angles - Static unbalance offset angles

[0, pi] rad (default) | nonnegative vector
Initial angle, about the center line of the shaft relative to the $x$-axis, of the excitational static unbalances.

## Dependencies

This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

## Advanced Bending

The Advanced Bending settings are exposed when, in the Shaft settings, the Model bending parameter is set to $0 n$. For more information, see "Model bending" on page 10

In the Advanced Bending settings, the value of the Bending vibration analysis method parameter affects the visibility of parameters in the Supports settings. For more information, see "Bending vibration analysis method" on page 1-0.

The Advanced Bending Parameter Dependencies table shows how the visibility of certain parameters in the Advanced Bending settings depends on the values for a combination of parameters in one or more of these settings:

- Shaft
- Supports
- Advanced Bending

For example, the Simulated eigenmode dependency on rotation speed parameter is visible if all these conditions are met:

- In the Shaft settings, Model bending is set to On.
- In the Supports settings, at least one Mounting type parameter is set to Speeddependent bearing matrix.
- In the Advanced Bending settings, Bending vibration analysis method is set to Eigenmodes.

Advanced Bending Parameter Dependencies

Settin g > Param eter	Specified Parameter Values and Dependent Advanced Bending Parameters								
Shaft   Model bendin g	Off	On							
Suppor ts > Mounti ng type	-	Any combination of Clamped, Pinned, Free, or Bearing matrix			At least one Speed-dependent bearing matrix and any combination of Clamped, Pinned, Free, or Bearing matrix				
The column s to the right show the Advanc ed Bendin g parame ters that are visible for the parame ter configu ration set shown in the corresp	-	Bending vibration analysis method			Bending vibration analysis method				
		Lumped mass	Eigenmodes		Lumped mass	Eigenmodes			
			Bending mode determination			Bending mode determination			
			Simsca pe determ ined	User Define d		Simsca determ	pe ined	User Defir	efined
			Limit numbe			Limit n of mode	umber es		
			$r$ of modes			Simula eigenm depend rotation	ted ode ency on speed	Simulat eigenm depend rotation	ted ode ency on n speed
						Static	Dynami   c	Static	Dynami c


Settin g > Param eter	Specified Parameter Values and Dependent Advanced Bending Parameters								
Shaft > Model bendin g	Off	On							
Suppor   ts $>$   Mounti   ng   type		Any combination of Clamped, Pinned, Free, or Bearing matrix		At least one Speed-dependent bearing matrix and any combination of Clamped, Pinned, Free, or Bearing matrix					
onding column in the heading rows of this table.		Eigenf requen cy upper limit		Nomin   al   shaft   speed   for   bendin   g    modes $~\left(\begin{array}{l}\text { Eigenf } \\ \text { requen } \\ \text { cy } \\ \text { upper } \\ \text { limit }\end{array}\left\|\begin{array}{l}\text { Eigenf } \\ \text { requen } \\ \text { cy } \\ \text { upper } \\ \text { limit }\end{array}\right\|\right.$		Nomin al shaft speed for bendin g modes			
		Shaft length increm ents	Modal freque ncies [m]			Shaft length increm ents	Shaft length increm ents	Modal freque ncies [s, m]	Modal freque ncies [s, m]
		for mode shape compu tations	Shaft positio $n$ [z]	for mode shape compu tations	for mode shape compu tations	Shaft positio n [z]	Shaft positio n [z]		



## Bending vibration analysis method - Bending vibration analysis method Lumped mass (default)|Eigenmodes

Method for analyzing the bending vibration. For more information, see "Bending Model Lumped Mass Method" on page 1-218 and "Bending Model Eigenmodes Method" on page 1-226.

Dependencies
This parameter is visible when, in the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0

The value of this parameter affects the visibility of other parameters in the Advanced Bending settings. For more information, see Advanced Bending Parameter Dependencies.

## Bending mode determination - Bending mode determination method Simscape determined (default)|User defined

Method for determining the eigenmode frequencies and shapes:

- Simscape determined - Simscape determines the mode based on boundary conditions that you specify.
- User defined - Specify the eigenmode frequencies and shapes directly.


## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0.
- In the Advanced Bending settings, the Bending vibration analysis method parameter is set to Eigenmodes. For more information, see Advanced Bending Parameter Dependencies.

The value of this parameter affects the visibility of other parameters in the Advanced Bending settings. For more information, see Mounting Type Parameter Dependencies.

## Limit number of modes - Maximum number of modes <br> 6 (default) | positive integer scalar

Maximum number of modes that Simscape determines.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0 .
- In the Advanced Bending settings, the Bending vibration analysis method parameter is set to Eigenmodes and the Bending mode determination parameter is set to Simscape determined. For more information, see Advanced Bending Parameter Dependencies.


## Simulated eigenmode dependency on rotation speed - Eigenmode dependency <br> Static (default) | Dynamic

Simulated dependency of the eigenmode properties on shaft rotation speed:

- Static - The bending analysis holds the eigenmode properties constant during changes in the rotational speed of the shaft.
- Dynamic - The bending analysis adjusts the eigenmode properties as the rotational speed of the shaft changes. The block uses the elements in the vector specified for the Bearing speed [s1,..., sS] parameter as lookup table reference points. For this model, the relative magnitudes of speed-dependent translational stiffness elements may not change at each bearing speed.


## Dependencies

This parameter is visible when all these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Supports settings, at least one mounting type parameter is set to Speeddependent bearing matrix.
- In the Advanced Bending settings, the Bending vibration analysis method parameter is set to Eigenmodes. For more information, see Advanced Bending Parameter Dependencies.


## Nominal shaft speed for bending modes - Nominal shaft speed 5000 rpm (default) | scalar

Rated shaft speed for the bending mode analysis.

## Dependencies

This parameter is visible if all these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On.
- In the Supports settings, at least one mounting type parameter are set to Speeddependent bearing matrix.
- In the Advanced Bending settings:
- The Bending vibration analysis method parameter is set to Eigenmodes.
- The Simulated eigenmode dependency on rotation speed parameter is set to Static.

For more information, see Advanced Bending Parameter Dependencies.

## Eigenfrequency upper limit - Eigenfrequency upper limit le8 rpm (default) | positive integer scalar

Eigenfrequency upper limit.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Advanced Bending settings, the Bending vibration analysis method parameter is set to Eigenmodes and the Bending mode determination parameter is set to Simscape determined. For more information, see Advanced Bending Parameter Dependencies.


## Shaft length increments for mode shape computations - Shaft length increments <br> 0.01 m (default) | positive scalar

Shaft length increments used for mode mass and shape computations. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Advanced Bending settings, the Bending vibration analysis method parameter is set to Eigenmodes and the Bending mode determination parameter is set to Simscape determined. For more information, see Advanced Bending Parameter Dependencies.

Modal frequencies [m] - Bearing-speed-independent modal frequencies [280, 644, 615, 1285] rad/s (default)| nonnegative vector

Modal frequencies for the bearing-speed-independent model. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0.
- In the Supports settings, no mounting types is set to Speed-dependent bearing matrix.
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.
Modal frequencies [s,m] - Bearing-speed-dependent modal frequencies [257, 780, 580, 1560; 280, 644, 615, 1285; 294, 513, 636, 1020] rad/s (default) | nonnegative matrix

Modal frequencies for the bearing-speed-dependent model. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

## Dependencies

This parameter is visible when both of these conditions are met:

- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0.
- In the Supports settings, at least one mounting type is set to Speed-dependent bearing matrix.
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.

## Shaft position [z] - Shaft position

```
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] (default)|increasing
``` nonnegative vector

Shaft position for mode shapes. The number of elements in the vector correspond to the number of rows in \(X\)-direction and \(Y\)-direction mode shapes. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

\section*{Dependencies}

This parameter is visible when both of these conditions are met:
- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0 .
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.
```

X-direction mode shapes [z,m] - Bearing-speed-independent X-direction
mode shapes
[.1648, .0086, -.2759, .0162; .1671, .0093,
-.2231, .0133; .1691, .01, -.1689, .0102; .1707, .0105,
-.1135, .007; .1717, .0108, -.057, .0035; .1721, .0109, 0,
0; .1717, .0108, .057, -.0035; .1707, .0105, .1135,
-.007; .1691, .01, .1689, -.0102; .1671, .0093, .2231,
-.0133; .1648, .0086, .2759, -.0162] (default)|matrix

```

The \(X\)-direction mode shapes matrix for the bearing-speed-independent model. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

The matrix must have dimensions \(z\)-by- \(m\), where:
- \(z\) is the number of elements in the specified vector for the Shaft position [z] parameter.
- \(m\) is the number of columns in the specified vector for the Modal frequencies parameter.

The mode shape matrix has the form \(\left[U_{1 x}, U_{2 x}, \ldots, U_{m x}\right]\), where each column is the mode shape deflection in the \(X\) direction for the \(m^{\text {th }}\) mode. The algorithm computes the modal properties based on the parameters in the Shaft and Bending settings.

\section*{Dependencies}

This parameter is visible when all these conditions are met:
- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Supports settings, no mounting type is set to Speed-dependent bearing matrix.
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.

\section*{X-direction mode shapes [z,m,s] - Bearing-speed-dependent X-direction mode shapes}


The \(X\)-direction mode shapes matrix for the bearing-speed-dependent model. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

The matrix must have dimensions \(z\)-by- \(m\)-by-s, where:
- \(z\) is the number of elements in the specified vector for the Shaft position [z] parameter.
- \(m\) is the number of coplumns in the specified vector for the Modal frequencies [z,m] parameter.
- \(s\) is the number of elements in the specified vector for the Bearing speed \([\mathbf{s} 1, \ldots, \mathbf{s S}\) ] parameter.

The mode shape matrix has the form cat( \(3,\left[U_{1 \times 1}, U_{2 \times 1}, \ldots, U_{m \times 1}\right], \ldots,\left[U_{1 \times s}, U_{2 \times s}, \ldots, U_{m \times s}\right]\) ), where each column is the mode shape deflection in the \(x\) direction, for the \(m^{\text {th }}\) mode. Each page corresponds to an element in the vector specified for the Bearing speed [s1,..., sS] parameter. The algorithm computes the modal properties based on the parameters in the Shaft and Bending settings.

\section*{Dependencies}

This parameter is visible when all these conditions are met:
- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Supports settings, at least one mounting type is set to Speed-dependent bearing matrix.
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.
```

Y-direction mode shapes [z,m] - Bearing-speed-independent Y-direction
mode shapes
[.1193, -.1784, -.1997, -.3348; .1209, -.1933, -.1615,
-.2751; .1224, -. 2068, -.1223, -.2119; .1235, -.2176, -.0821,
-.1445; .1243, -.2245, -.0413, -.0734; .1246, -.2269, 0, 0; .1243,
-.2245, .0413, .0734; .1235, -.2176, .0821, .1445; .1224,
-.2068, .1223, .2119; .1209, -. 1933, .1615, .2751; .1193,
-.1784, .1997, .3348] (default)| matrix

```

The \(Y\)-direction mode shapes matrix for the bearing-speed-independent model. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

The matrix must have dimensions \(z\)-by- \(m\), where:
- \(z\) is the number of elements in the specified vector for the Shaft position [z] parameter.
- \(m\) is the number of columns in the specified vector for the Modal frequencies parameter.

The mode shape matrix has the form [ \(U_{1 y}, U_{2 y}, \ldots, U_{m y}\) ], where each column is the mode shape deflection in the \(Y\) direction, for the \(m^{\text {th }}\) mode. The algorithm computes the modal properties based on the parameters in the Shaft and Bending settings.

\section*{Dependencies}

This parameter is visible when both of these conditions are met:
- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0.
- In the Supports settings, no mounting type is set to Speed-dependent bearing matrix.
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.
Y-direction mode shapes \([\mathbf{z}, \mathrm{m}, \mathbf{s}]-\) Bearing-speed-dependent \(\boldsymbol{y}\)-direction
mode shapes
cat \((3,[.0885,-.1625,-.1475,-.3301 ; .0895,-.1847,-.1192\),
\(-.2745 ; .0904,-.2048,-.0902,-.2141 ; .0911,-.2209,-.0606\),
\(-.1475 ; .0916,-.2313,-.0304,-.0754 ; .0917,-.2349,0,0 ; .0916\),
\(-.2313, .0304, .0754 ; .0911,-.2209, .0606, .1475 ; .0904\),
\(-.2048, .0902, .2141 ; .0895,-.1847, .1192, .2745 ; .0885\),
\(-.1625, .1475, .3301],[.1193,-.1784,-.1997,-.3348 ; .1209\),
\(-.1933,-.1615,-.2751 ; .1224,-.2068,-.1223,-.2119 ; .1235\),
\(-.2176,-.0821,-.1445 ; .1243,-.2245,-.0413,-.0734 ; .1246\),
\(-.2269,0,0 ; .1243,-.2245, .0413, .0734 ; .1235\),
\(-.2176, .0821, .1445 ; .1224,-.2068, .1223, .2119 ; .1209\),
\(-.1933, .1615, .2751 ; .1193,-.1784, .1997, .3348],[.1566,-.1901\),
\(-.2628,-.3377 ; .1589,-.1994,-.2125,-.2753 ; .161,-.2079,-.1609\),
\(-.2103 ; .1627,-.2146,-.1081,-.1424 ; .1638,-.219,-.0544\),
\begin{tabular}{l}
\(-.0719 ; .1642,-.2205,0,0 ; .1638,-.219, .0544, .0719 ; ~ .1627\), \\
\(-.2146, .1081, ~ .1424 ; .161,-.2079, .1609, .2103 ; .1589\), \\
\(-.1994, .2125\), \\
\hline
\end{tabular}

The \(Y\)-direction mode shapes matrix for the bearing-speed-dependent model. For more information, see "Bending Model Eigenmodes Method" on page 1-226.

The matrix must have dimensions \(z\)-by- \(m\)-by-s, where:
- \(z\) is the number of elements in the specified vector for the Shaft position [z] parameter.
- \(m\) is the number of columns in the specified vector for the Modal frequencies [z,m] parameter.
- \(s\) is the number of elements in the specified vector for the Bearing speed \([\mathbf{s 1}, \ldots, \mathbf{s S}\) ] parameter.

The mode shape matrix has the form cat \(\left(3,\left[U_{1 y 1}, U_{2 y 1}, \ldots, U_{m y 1}\right], \ldots,\left[U_{1 y s}, U_{2 y s}, \ldots, U_{m y s}\right]\right)\), where each column is the mode shape deflection in the \(y\) direction, for the \(m^{\text {th }}\) mode. Each page corresponds to an element in the vector specified for the Bearing speed [s1,..., sS] parameter. The algorithm computes the modal properties based on the parameters in the Shaft and Bending settings.

\section*{Dependencies}

This parameter is visible when all these conditions are met:
- In the Shaft settings, the Model bending parameter is set to On. For more information, see "Model bending" on page 1-0
- In the Supports settings, at least one mounting type is set to Speed-dependent bearing matrix.
- In the Advanced Bending settings:
- Bending vibration analysis method is set to Eigenmodes.
- Bending mode determination is set to User defined.

For more information, see Advanced Bending Parameter Dependencies.

\section*{References}
[1] Adams, M.L. Rotating Machinery Vibration. CRC Press, NY: 2010.
[2] Bathe, K. J. Finite Element Procedures. Prentice Hall, 1996.
[3] Chudnovsky, V., D. Kennedy, A. Mukherjee, and J. Wendlandt. Modeling Flexible Bodies in SimMechanics and Simulink. MATLAB Digest, Volume 14, Number 3. May 2006.
[4] Miller, S., T. Soares, Y. Van Weddingen, J. Wendlandt. Modeling Flexible Bodies with Simscape Multibody. The MathWorks, 2017.
[5] Muszynska, A. Rotordynamics. Taylor \& Francis, 2005
[6] Rao, S.S. Vibration of Continuous Systems. Hoboken, NJ: John Wiley \& Sons, 2007.

\section*{See Also}

Inertia | Rod | Rotational Damper | Rotational Spring | Torsional spring damper | fminbnd

\section*{Topics}
"Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models"

\section*{Introduced in R2018b}

\section*{Force Noise Source}

Model zero-mean normally (Gaussian) distributed force Library: Simscape / Driveline / Sources


\section*{Description}

The Force Noise Source block generates zero-mean normally (Gaussian) distributed force using the Random Number source in the Simscape Foundation library. The force produced by the block depends on two factors:
- The noise power spectral density input to the block
- A random number seed that you control using the Repeatability and, as applicable, Seed parameters

The defining equation for the force that the block generates is
\[
F=\sqrt{P S D / 2} \frac{N(0,1)}{\sqrt{h}}
\]
where:
- \(F\) is the output force.
- \(\quad P S D\) is the single-sided noise power spectral density.
- \(N\) is a Gaussian random number with zero mean and standard deviation of one.
- \(h\) is the sampling interval.

\section*{Ports}

\section*{Input}

\section*{P - Single-sided noise power spectral density physical signal}

The power spectral density (PSD) of noise is the average noise power per unit of bandwidth, in \(\mathrm{N}^{2} / \mathrm{Hz}\).

\section*{Conserving}

\section*{B - Base interface}
mechanical translational
Mechanical translational conserving port associated with the base interface.

\section*{F - Follower interface \\ mechanical translational}

Mechanical translational conserving port associated with the follower interface.

\section*{Parameters}

\section*{Sample time - Time step period and offset} 1e-3 s (default)|[step, offset] s

The values of the time step period and the initial time offset. If you specify a scalar value for step, the block assumes an offset value of 0 .To specify a nonzero value for the initial time offset, specify the parameter values using the vector [step, offset]. The offset value must be less than the step value and greater than or equal to zero.

\section*{Repeatability - Random number seed control}

Not repeatable (default)|Repeatable|Specify seed
The random number seed is the number that initializes the random number generator. The seed is 0 or a positive integer. To control the random number seed, set this parameter to:
- Not repeatable - The seed changes every time you simulate your model. The block resets the random seed using the MATLAB \({ }^{\circledR}\) random number generator command:
seed \(=\) randi(2^32-1);
- Repeatable - The seed is the same random number at the start of every simulation. The block sets the value using the same MATLAB random number generator command used by the Not repeatable parameter.

When you add a Force Noise Source block to your model from the Sources library, the block generates and stores a random value for the repeated seed. When you make a copy of the Force Noise Source block from an existing block in a model, the copy generates a new random value for the repeated seed.
- Specify seed - The seed is a number that you specify using the Seed parameter. The Seed parameter is only available when you choose Specify seed for the Repeatability parameter.

\section*{Seed - Random number generation seed value}

0 (default)
The seed must be 0 or a positive integer. This parameter is only available when you select Specify seed for the Repeatability parameter.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\text {Coder }}{ }^{\mathrm{Tm}}\).

\section*{See Also}

\author{
Simscape Blocks
}

Random Number | Rotational Velocity Noise Source | Sinusoidal Force Source | Torque
Noise Source | Translational Velocity Noise Source

\section*{Functions}
randi

\section*{Introduced in R2016b}

\section*{Fundamental Friction Clutch}

Friction clutch with kinetic and static-limit friction torques as inputs
Library: Simscape / Driveline / Clutches / Fundamental Components


\section*{Description}

This block represents a friction clutch, a mechanism that transmits rotational power through friction. The clutch contains two friction plate sets, each rigidly connected to a driveshaft, that come into contact to engage. Once in contact, the plates experience frictional torques that enable power to flow between the driveshafts.

The clutch can be bidirectional or unidirectional. A bidirectional clutch can slip in the positive and negative directions. A unidirectional clutch can slip only in the positive direction. The slip direction is positive if the follower shaft spins faster than the base shaft and negative if it spins slower. The block defines the slip velocity as the difference
\[
\omega=\omega_{\mathrm{F}}-\omega_{\mathrm{B}},
\]
where:
- \(\omega\) is the slip velocity.
- \(\omega_{F}\) is the angular velocity of the follower driveshaft.
- \(\omega_{B}\) is the angular velocity of the base driveshaft.

\section*{Clutch States}

The clutch can be in three states:
- Locked - Real clutch state in which the friction plates spin as a unit. A locked clutch has one rotational degree of freedom. It experiences no power losses due to friction.
- Unlocked - Real clutch state in which the friction plates slip with respect to each other. An unlocked clutch has two rotational degrees of freedom. It experiences power losses equal to the product of the slip velocity and the kinetic friction torque.
- Wait - Virtual clutch state that maintains the motion of the previous state while testing for locking and unlocking. The clutch degrees of freedom and power losses depend on the previous clutch state.

The schematic shows the conditions under which the clutch is locked and unlocked. The clutch is generally locked if the torque it transfers lies between its static friction torque limits and the magnitude of the slip velocity is smaller than its velocity tolerance. The clutch unlocked otherwise.


In the schematic:
- \(\tau\) is the torque transferred between the clutch plates.
- \(\tau_{S}{ }^{-}\)and \(\tau_{\mathrm{S}}{ }^{+}\)are the static friction torque limits.
- \(\tau_{K}\) is the kinetic friction torque between the clutch plates.
- \(\omega_{\text {Tol }}\) is the slip velocity tolerance of the clutch.
- \(\omega\) is the slip velocity between the clutch plates.

The block identifies the clutch state through physical signal port \(\mathbf{M}\) using values \(-1,0\), and +1 . The table summarizes the correspondence between the states and the output values.
\begin{tabular}{|l|l|}
\hline State & Value \\
\hline Unlocked Forward or Wait Forward & +1 \\
\hline Unlocked Reverse or Wait Reverse & -1 \\
\hline Locked or Unlocked Initial State & 0 \\
\hline
\end{tabular}

\section*{State Transitions}

At the start of simulation, the clutch is in one of two states - locked or initial unlocked. The initial unlocked state is unique in that it lacks a direction of motion. The clutch remains in this state until the clutch slip velocity becomes nonzero. The clutch then transitions to the appropriate state, unlocked reverse or unlocked forward, according to the schematic.

During simulation, the clutch tests various dynamic conditions to determine the appropriate state transitions, if any. The schematics show the possible transitions, their dynamic conditions, and the resulting states. If the clutch is unidirectional, the schematic reduces to the right half. The diagram shows transitions for a one-way clutch.


The diagram shows transitions for a two-way clutch.


\section*{Thermal Model}

You can model the effects of heat flow and temperature change by exposing the optional thermal port. To expose the port, in the Parameters settings, set the Thermal Port parameter to Model. Exposing the thermal port also exposes these related settings:
- Parameters > Thermal Mass
- Variables > Temperature

\section*{Variables}

Use the Variables settings to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

\section*{Dependencies}

Variable settings are visible only if, in the Parameters settings, the Thermal port parameter is set to Model.

\section*{Ports}

\section*{Input}

\section*{tK - Kinetic friction torque, \(\mathbf{N}^{*}\) m \\ physical signal}

Physical signal input port for the kinetic friction torque.

\section*{t+ - Static friction torque upper bound, \(\mathbf{N}^{*} \mathbf{m}\)}

\section*{physical signal}

Physical signal input port for the upper static friction torque limit.
t - - Static friction torque lower bound, \(\mathbf{N} * \mathbf{m}\)
physical signal
Physical signal input port for the lower static friction torque limit.

\section*{Output}

\section*{S - Clutch slip velocity, rad/sec \\ physical signal}

Physical signal output port for the clutch slip velocity.

\section*{M - Clutch state}
physical signal

Physical signal output port for the clutch state.

\section*{Conserving}

\section*{B - Rotational velocity, rad/sec}
mechanical rotational
Rotational conserving ports associated with the driving shaft.

\section*{F - Rotational speed, rad/sec}
mechanical rotational
Rotational conserving ports associated with the driven shaft

\section*{H - Heat flow}
thermal
Thermal conserving port associated with heat flow.

\section*{Dependencies}

This port is visible only if, in the Parameters settings, the Thermal Port parameter is set to Model.

Exposing this port makes related settings visible.

\section*{Parameters}

\section*{Directionality - Permissible inter-plate slip directions Bidirectional (default) | Unidirectional}

Slip directions the clutch allows between its plates. A bidirectional clutch allows positive and negative slip velocities. A unidirectional clutch allows only positive slip velocities.

The unidirectional clutch is equivalent to a friction clutch connected in parallel to a oneway clutch that disengages only when the slip velocity becomes positive. To model a unidirectional clutch with slip in the negative direction, reverse the base and follower port connections.
```

Thermal port - Thermal model
Omit (default) | Model

```

Model for heat flow and temperature change:
- Omit - Neglect thermal dynamics.
- Model - Include thermal dynamics.

\section*{Dependencies}

When this parameter is set to Model, thermal port \(\mathbf{H}\) and related settings are visible.

\section*{Thermal mass - Resistance to temperature change \\ 50 kJ/K (default) | scalar}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

This parameter is only visible when the Thermal Port parameter is set to Model.

\section*{Clutch velocity tolerance - Slip velocity threshold \(0.001 \mathrm{rad} / \mathrm{s}\) (default) | scalar}

Slip velocity below which the clutch can lock. The clutch locks if, after falling below the clutch velocity tolerance, the kinetic friction torque is nonzero and the transferred torque is between the static friction torque limits.

\section*{Initial state - Initial clutch state \\ Unlocked (default) | Locked}

Clutch state at the start of simulation. The clutch can be in one of two states, locked and unlocked. A locked clutch constrains the base and follower shafts to spin at the same velocity, that is, as a single unit. An unlocked clutch allows the two shafts to spin at different velocities, resulting in slip between the clutch plates.

A clutch that starts simulation unlocked lacks a direction of motion. For this reason, after checking that the unlocked state is valid, the block automatically determines the appropriate direction of motion based on the driveline dynamics. Based on the direction of motion, the clutch then transitions to an unlocked-reverse or unlocked-forward state.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR} \operatorname{Coder}^{\mathrm{TM}}\).
}

\section*{See Also}

Cone Clutch | Differential | Disk Friction Clutch | Dog Clutch | Double-Sided Synchronizer | Fundamental Friction Clutch | Logic-Controlled Clutch | Synchronizer | Torque Converter | Unidirectional Clutch | Variable Ratio Transmission

\author{
Topics \\ "Gear Coupling Control Using Clutches" \\ Introduced in R2011a
}

\section*{Generic Engine}

Internal combustion engine with throttle and rotational inertia and time lag


\section*{Library}

Simscape / Driveline / Engines

\section*{Description}

The Generic Engine block represents a general internal combustion engine. Engine types include spark-ignition and diesel. Speed-power and speed-torque parameterizations are provided. A throttle physical signal input specifies the normalized engine torque. Optional dynamic parameters include crankshaft inertia and response time lag. A physical signal port outputs engine fuel consumption rate based on choice of fuel consumption model. Optional speed and redline controllers prevent engine stall and enable cruise control.


\section*{Generic Engine Model}

By default, the Generic Engine model uses a programmed relationship between torque and speed, modulated by the throttle signal.

\section*{Engine Speed, Throttle, Power, and Torque}

The engine model is specified by an engine power demand function \(g(\Omega)\). The function provides the maximum power available for a given engine speed \(\Omega\). The block parameters (maximum power, speed at maximum power, and maximum speed) normalize this function to physical maximum torque and speed values.

The normalized throttle input signal \(T\) specifies the actual engine power. The power is delivered as a fraction of the maximum power possible in a steady state at a fixed engine speed. It modulates the actual power delivered, \(P\), from the engine: \(P(\Omega, T)=T \cdot g(\Omega)\). The engine torque is \(\tau=P / \Omega\).

\section*{Engine Power Demand}

The engine power is nonzero when the speed is limited to the operating range, \(\Omega_{\min } \leq \Omega \leq\) \(\Omega_{\max }\). The absolute maximum engine power \(P_{\max }\) defines \(\Omega_{0}\) such that \(P_{\max }=g\left(\Omega_{0}\right)\). Define \(w \equiv \Omega / \Omega_{0}\) and \(g(\Omega) \equiv P_{\max } \cdot p(w)\). Then \(p(1)=1\) and \(d p(1) / d w=0\). The torque function is:
\(\tau=\left(P_{\max } / \Omega_{0}\right) \cdot[p(w) / w]\).
You can derive forms for \(p(w)\) from engine data and models. Generic Engine uses a thirdorder polynomial form:
\(p(w)=p_{1} \cdot w+p_{2} \cdot w^{2}-p_{3} \cdot w^{3}\)
satisfying
\(p_{1}+p_{2}-p_{3}=1, p_{1}+2 p_{2}-3 p_{3}=0\).
In typical engines, the \(p_{i}\) are positive. This polynomial has three zeros, one at \(w=0\), and a conjugate pair. One of the pair is positive and physical; the other is negative and unphysical:
\[
w_{ \pm}=\frac{1}{2}\left(-p_{2} \pm \sqrt{p_{2}^{2}+4 p_{1} p_{3}}\right)
\]


\section*{Typical Engine Power Demand Function}

\section*{Restrictions on Engine Speed and Power}
- For the engine power polynomial, there are restrictions, as shown, on the polynomial coefficients \(p_{\mathrm{i}}\), to achieve a valid power-speed curve.
- If you use tabulated power or torque data, corresponding restrictions on \(P(\Omega)\) remain.

Specify the speed and power as \(w=\Omega / \Omega_{0}\) and \(p=P(\Omega) / P_{0}\) and define the boundaries as \(w_{\text {min }}=\Omega_{\text {min }} / \Omega_{0}\) and \(w_{\max }=\Omega_{\max } / \Omega_{0}\). Then:
- The engine speed is restricted to a positive range above the minimum speed and below the maximum speed: \(0 \leq w_{\min } \leq w \leq w_{\max }\).
- The engine power at minimum speed must be nonnegative: \(p\left(w_{\min }\right) \geq 0\). If you use the polynomial form, this condition is a restriction on the \(p_{\mathrm{i}}\) :
\(p\left(w_{\text {min }}\right)=p_{1} \cdot w_{\text {min }}+p_{2} \cdot w_{\text {min }}^{2}-p_{3} \cdot w_{\text {min }}{ }^{3} \geq 0\).
- The engine power at maximum speed must be nonnegative: \(p\left(w_{\max }\right) \geq 0\). If you use the polynomial form, this condition is a restriction on \(w_{\max }: w_{\max } \leq w_{+}\).

\section*{Engine Power Forms for Different Engine Types}

For the default parameterization, the block provides two choices of internal combustion engine types, each with different engine power demand parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Power Demand \\
Coefficient
\end{tabular} & Engine Type: \\
\cline { 2 - 3 } & Spark-Ignition & Diesel \\
\hline\(p_{1}\) & 1 & 0.6526 \\
\hline\(p_{2}\) & 1 & 1.6948 \\
\hline\(p_{3}\) & 1 & 1.3474 \\
\hline
\end{tabular}

\section*{Idle Speed Controller Model}

The idle speed controller adjusts the throttle signal to increase engine rotation below a reference speed according to the following expressions:
\[
\Pi=\max \left(\Pi_{i}, \Pi_{C}\right)
\]
and
\[
\frac{d\left(\Pi_{C}\right)}{d t}=\frac{0.5 \cdot\left(1-\tanh \left(4 \cdot \frac{\omega-\omega_{r}}{\omega_{t}}\right)\right)-\Pi_{C}}{\tau}
\]
where:
- \(\Pi\) - Engine throttle
- \(\Pi_{i}\) - Input throttle (port T)
- \(\Pi_{c}\) - Controller throttle
- \(\omega\) - Engine speed
- \(\omega_{r}\) - Idle speed reference
- \(\omega_{t}\) - Controller speed threshold
- \(\tau\) - Controller time constant

The controlled throttle increases with a first-order lag from zero to one when engine speed falls below the reference speed. When the engine speed rises above the reference speed, the controlled throttle decreases from one to zero. When the difference between engine velocity and reference speed is smaller than the controller speed threshold, the tanh function smooths the time derivative of the controlled throttle. The controlled throttle is limited to the range \(0-1\). The engine uses the larger of the input and controlled throttle values. If engine time lag is included, the controller changes the input before the lag is computed.

\section*{Redline Controller Model}

While the idle speed controller determines the minimum throttle value for maintaining engine speed, the redline controller prevents excessive speed based on a maximum throttle input. To determine the maximum throttle value, the redline controller uses the idle speed controller model equation. However, for the redline controller:
- \(\omega_{r}\) is the redline speed reference.
- \(\omega_{t}\) is the redline speed threshold.
- \(\tau\) is the redline time constant.

\section*{Performance}

To increase simulation speed, use the default option, No fuel consumption, for the Fuel consumption model parameter.

If you select any other option for the Fuel consumption model, the block solves a nonlinear equation that is required for calculating fuel consumption. The block solves the equation even if the FC port, which reports the fuel consumption rate, is not connected to another block.

When the parameter is set to No fuel consumption, the block does not calculate fuel consumption, even if the FC port is connected to another block.

\section*{Limitations}

This block contains an engine time lag limitation.

\section*{Engine Time Lag}

Engines lag in their response to changing speed and throttle. The block optionally supports lag due to a changing throttle only. Time lag simulation increases model fidelity but reduces simulation performance.

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline B & Rotational conserving port representing the engine block \\
\hline F & Rotational Conserving port representing the engine crankshaft \\
\hline \(\mathbf{T}\) & Physical signal input port specifying the normalized engine throttle level \\
\hline \(\mathbf{P}\) & \begin{tabular}{l} 
Physical signal output port reporting the instantaneous engine power, in \\
W
\end{tabular} \\
\hline FC & Physical signal output port reporting the fuel consumption rate, in kg/s \\
\hline
\end{tabular}

Port \(\mathbf{T}\) accepts a signal with values in the range \(0-1\). The signal specifies the engine torque as a fraction of the maximum torque possible in steady state at fixed engine speed. The signal saturates at zero and one. Values below zero are interpreted as zero. Values above one are interpreted as one.

Port FC does not output data when the Fuel consumption model parameter is set to No fuel consumption.

\section*{Parameters}

\section*{Engine Torque}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Engine Torque Parameter Dependencies}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Engine Torque } \\
\hline \begin{tabular}{l} 
Model parameterization - Choose Normalized 3rd-order polynomial matched \\
to peak power, Tabulated torque data, or Tabulated power data
\end{tabular} \\
\hline \begin{tabular}{l} 
Normalized 3rd-order \\
polynomial matched to \\
peak power
\end{tabular} & Tabulated torque data & Tabulated power data \\
\hline \begin{tabular}{l} 
Engine type - Choose \\
Spark-ignition or \\
Diesel
\end{tabular} & Speed vector \\
\hline Maximum power & Torque vector \\
\hline Speed at maximum power & Interpolation method - Choose Linear or Smooth \\
\hline Maximum speed & \\
\cline { 1 - 1 } Stall speed & \\
\hline
\end{tabular}

\section*{Model parameterization}

Select how to model the engine. Choose between these options, each of which enable other parameters:
- Normalized 3rd-order polynomial matched to peak power Parametrize the engine with a power function controlled by power and speed characteristics. This is the default option.
- Tabulated torque data - Engine is parametrized by speed-torque table that you specify.
- Tabulated power data - Engine is parametrized by speed-power table that you specify.

\section*{Engine type}

Choose type of internal combustion engine. Choose between Spark-ignition, the default option, and Diesel.

Selecting Normalized 3rd-order polynomial matched to peak power for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Maximum power}

Maximum power \(P_{\max }\) that the engine can output. The default is 150 kW .
Selecting Normalized 3rd-order polynomial matched to peak power for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Speed at maximum power}

Engine speed \(\Omega_{0}\) at which the engine is running at maximum power. The default is 4500 rpm.

Selecting Normalized 3rd-order polynomial matched to peak power for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Maximum speed}

Maximum speed \(\Omega_{\max }\) at which the engine can generate torque. The default is 6000 rpm.

During simulation, if \(\Omega\) exceeds this maximum, the simulation stops with an error. The engine maximum speed \(\Omega_{\max }\) cannot exceed the engine speed at which the engine power becomes negative.

Selecting Normalized 3rd-order polynomial matched to peak power for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Stall speed}

Minimum speed \(\Omega_{\min }\) at which the engine can generate torque. The default is 500 rpm.

During simulation, if \(\Omega\) falls below this minimum, the engine torque is blended to zero.

Selecting Normalized 3rd-order polynomial matched to peak power for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Speed vector}

Vector of values of the engine function's independent variable, the speed \(\Omega\). The default is [500, 1000, 2000, 3000, 4000, 5000, 6000, 7000] rpm.

The first and last speeds in the vector are interpreted as the stall speed and the maximum speed, respectively. If the speed falls below the stall speed, engine torque is blended to zero. If the speed exceeds the maximum speed, the simulation stops with an error.

Selecting Tabulated torque data or Tabulated power data for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Torque vector}

Vector of values of the engine function's dependent variable, the torque \(\tau\). The default is \([380,380,380,380,350,280,200,80] N * m\).

Selecting Tabulated torque data for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Power vector}

Vector of values of the engine function's dependent variable, the power \(P\). The default is \([20,40,78,120,145,148,125,60] \mathrm{kW}\).

Selecting Tabulated power data for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Interpolation method}

Method to interpolate the engine speed-torque or speed-power function between discrete relative velocity values within the range of definition. Choose between Linear, the default choice, and Smooth.

Selecting Tabulated torque data or Tabulated power data for the Model parameterization parameter exposes this parameter.

For more information, see the Engine Torque Parameter Dependencies table.

\section*{Dynamics}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Dynamics Parameter Dependencies}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{|l|}
\hline Dynamics \\
\hline
\end{tabular} Inertia - Choose No inertia or Specify & inertia and initial velocity \\
\hline \multirow{2}{*}{ No inertia } & Specify inertia and initial velocity \\
\cline { 2 - 3 } & Engine inertia \\
\cline { 2 - 3 } & Initial velocity \\
\hline \begin{tabular}{l} 
Time constant - Choose No lag - Suitable for HIL simulation or Specify \\
time constant and initial value
\end{tabular} & \\
\hline No lag - Suitable for HIL simulation & Specify time constant and initial value \\
& Engine time constant \\
\cline { 2 - 3 } & Initial normalized throttle \\
\hline
\end{tabular}

\section*{Inertia}

Select how to model the rotational inertia of the engine block. Choose between these options, each of which exposes other parameters:
- No inertia - Engine crankshaft is modeled with no inertia. This option is the default.
- Specify inertia and initial velocity - Engine crankshaft is modeled with rotational inertia and initial angular velocity.

\section*{Engine Inertia}

Rotational inertia of the engine crankshaft. The default is \(1 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).
Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

For more information, see the Dynamics Parameter Dependencies table.

\section*{Initial velocity}

Initial angular velocity \(\Omega(0)\) of the engine crankshaft. The default is 800 rpm .

Selecting Specify inertia and initial velocity for the Inertia parameter exposes this parameter.

For more information, see the Dynamics Parameter Dependencies table.

\section*{Time constant}

Select how to model the time lag of the engine response. Choose between these options, each of which exposes other options:
- No lag - Suitable for HIL simulation - Engine reacts with no time lag. This option is the default.
- Specify time constant and initial value - Engine reacts with a time lag.

Selecting Specify time constant and initial value exposes other parameters.

For more information, see the Dynamics Parameter Dependencies table.

\section*{Engine time constant}

Engine time lag. The default is 0.2 s .
Selecting Specify time constant and initial value for the Time constant parameter exposes this parameter.

For more information, see the Dynamics Parameter Dependencies table.

\section*{Initial normalized throttle}

Initial normalized engine throttle \(T(0)\), ranging between zero and one. The default is 0.

Selecting Specify time constant and initial value for the Time constant parameter exposes this parameter.

For more information, see the Dynamics Parameter Dependencies table.

\section*{Limits}

\section*{Speed threshold}

Width of the speed range over which the engine torque is blended to zero as \(\Omega\) approaches the stall speed. The default is 100 rpm .

\section*{Fuel Consumption}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Fuel Consumption Parameter Dependencies}
\begin{tabular}{|l|l|l|l|}
\hline Fuel Consumption \\
\hline \begin{tabular}{ll} 
Fuel consumption model - Choose No fuel consumption, Constant per \\
revolution, Fuel consumption by speed and torque, Brake specific fuel \\
consumption by speed and torque, or Brake specific fuel consumption \\
by speed and brake mean effective pressure
\end{tabular} \\
\hline \begin{tabular}{l} 
No fuel \\
consumption
\end{tabular} & \begin{tabular}{l} 
Constant per \\
revolution
\end{tabular} & \begin{tabular}{l} 
Fuel \\
consumption \\
by speed and \\
torque
\end{tabular} & \begin{tabular}{l} 
Brake specific \\
fuel \\
consumption \\
by speed and \\
torque
\end{tabular} \\
\hline
\end{tabular}

\section*{Fuel consumption model}

Select a model for calculating engine-fuel consumption. Model parameterizations are compatible with standard industrial data. Choose between these options:
- No fuel consumption - The default option
- Constant per revolution
- Fuel consumption by speed and torque
- Brake specific fuel consumption by speed and torque
- Brake specific fuel consumption by speed and brake mean effective pressure

Some options expose other parameters. For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{No fuel consumption}

The block does not calculate fuel consumption even when the FC port, which reports the fuel consumption rate, is connected to another block. Selecting this option increases simulation speed.

\section*{Fuel consumption per revolution}

Enter the volume of fuel consumed in one crankshaft revolution. The default is \(25 \mathrm{mg} /\) rev.

Selecting Constant per revolution for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Displaced volume}

Enter the volume displaced by a piston stroke. The default is \(400 \mathrm{~cm}^{\wedge} 3\).
Selecting Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Revolutions per cycle}

Enter the number of crankshaft revolutions in one combustion cycle - e.g. 2 for a four-stroke engine, or 1 for a two-stroke engine. The default is 2 .

Selecting Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Speed vector}

Enter vector of engine speeds used in lookup table parameterizations. Vector size must match Torque vector size. The default is [1000, 2000, 3000, 4000, 5000, 6000] rpm. Selecting Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Torque vector}

Enter vector of engine torques used in the lookup table parameterizations. Vector size must match Speed vector size. The default is [0, 80, 160, 200, 240, 320, 360, 400] N*m. Selecting Fuel consumption by speed and torque or Brake specific fuel consumption by speed and torque for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Fuel consumption table}

Enter matrix with fuel consumption rates corresponding to engine speed and torque vectors. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Torque vector. The default is \([.5, .9,1.4,1.6,1.9,2.7,3.4,4.4 ; 1,1.7\), \(2.7,3.1,3.6,5,6,7.4 ; 1.4,2.7,4,4.8,5.6,7.5,8.5,10.5 ;\) \(2,3.6,5.8,6.7,8,10.4,11.7,13.3 ; 2.5,4.8,7.9,9.4,10.8\), \(14,16.2,18.6 ; 3.1,6,10.3,11.9,13.8,18.4,22,26.5] \mathrm{g} / \mathrm{s}\).

Selecting Fuel consumption by speed and torque for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Brake mean effective pressure vector}

Enter vector of brake mean effective pressure (BMEP) values. The default is [0, 250, 500, 625, 750, 1000, 1150, 1250] kPa. The BMEP satisfies the expression:
\[
B M E P=T \cdot\left(\frac{2 \pi \cdot n_{c}}{V_{d}}\right)
\]
where:
- T-Output torque
- \(n_{c}\) - Number of cycles per revolution
- \(V_{d}\) - Cylinder displaced volume

Selecting Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Brake specific fuel consumption table}

Selecting Brake specific fuel consumption by speed and torque or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.
For the Brake specific fuel consumption by speed and torque fuel model, enter the matrix with brake specific fuel consumption (BSFC) rates corresponding to engine speed and torque vectors. BSFC is the ratio of the fuel consumption rate to the output power. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Torque vector.

For the Brake specific fuel consumption by speed and brake mean effective pressure fuel model, enter the matrix with brake specific fuel consumption (BSFC) rates corresponding to engine speed and brake mean effective pressure (BMEP) vectors. BSFC is the ratio of the fuel consumption rate to the output power. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Brake mean effective pressure vector.

For both fuel-consumption models, the default is [410, 380, 300, 280, 270, 290, 320, 380; 410, 370, 290, 270, 260, 270, 285, 320; 415, 380, 290, 275, 265, 270, 270, 300; 420, 390, 310, 290, 285, 280, 280, 285; 430, 410, 340, 320, 310, 300, 310, 320; 450, 430, 370, 340, 330, 330, 350, 380] g/hr/kW.

\section*{Interpolation method}

Select the interpolation method used to calculate fuel consumption at intermediate speed-torque values. Methods are Linear and Smooth. Outside the data range, fuel
consumption is held constant at the last value given in the lookup table. Selecting Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Speed Control}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Speed Control Parameter Dependencies
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Speed Control} \\
\hline \multicolumn{2}{|l|}{Idle speed control - Choose Off or On} \\
\hline \multirow[t]{4}{*}{Off} & On \\
\hline & Idle speed reference \\
\hline & Controller time constant \\
\hline & Redline control \\
\hline \multicolumn{2}{|l|}{Redline control - Choose Off or On} \\
\hline \multirow[t]{4}{*}{Off} & On \\
\hline & Redline speed \\
\hline & Redline time constant \\
\hline & Redline threshold speed \\
\hline
\end{tabular}

\section*{Idle speed control}

Select speed control model. The options are:
- Off - Omit idle speed controller. Throttle input is used directly. This option is the default.
- On - Include idle speed controller to prevent engine stalling. This option exposes other parameters. For more information, see "Idle Speed Controller Model" on page 1-301.

\section*{Idle speed reference}

Enter the value of the speed reference below which speed increases, and above which speed decreases. The default is 1000 rpm .

Selecting 0 n for the Idle speed control parameter exposes this parameter.
For more information, see the Speed Control Parameter Dependencies table.

\section*{Controller time constant}

Enter the value of the time constant associated with an increase or decrease of the controlled throttle. The constant value must be positive. The default is 1 s .

Selecting \(0 n\) for the Idle speed control parameter exposes this parameter.
For more information, see the Speed Control Parameter Dependencies table.

\section*{Controller threshold speed}

Parameter used to smooth the controlled throttle value when the engine's rotational speed crosses the idle speed reference. For more information, see "Idle Speed Controller Model" on page 1-301. Large values decrease controller responsiveness. Small values increase computational cost. This parameter must be positive. The default is 1 rpm .

Selecting 0 n for the Idle speed control parameter exposes this parameter.
For more information, see the Speed Control Parameter Dependencies table.

\section*{Redline control}

Select redline control model. Options include Off and On.
- Off - Omit redline controller. Throttle depends only on the idle speed controller. This option is the default.
- \(0 n\) - Include redline controller to prevent excessive speed. This option exposes other parameters.

For more information, see the Speed Control Parameter Dependencies table.

\section*{Redline speed}

Enter the value of the speed reference above which the redline control activates. The default is 5000 rpm .

Selecting 0n for the Redline control parameter exposes this parameter.

For more information, see the Speed Control Parameter Dependencies table.

\section*{Redline time constant}

Enter the value of the time constant associated with an increase or decrease of the controlled throttle. The constant value must be positive. The default is 1 s .

Selecting 0n for the Redline control parameter exposes this parameter.
For more information, see the Speed Control Parameter Dependencies table.

\section*{Redline threshold speed}

Specify the width of the region around the redline speed where the controller goes from fully enabled to not enabled. The block uses this parameter for smoothing the controlled throttle value when the engine's rotational speed crosses the redline speed reference. Large values decrease controller responsiveness. Small values increase computational cost. This parameter must be positive. The default is 1 rpm .

Selecting 0n for the Redline control parameter exposes this parameter.
For more information, see the Speed Control Parameter Dependencies table.

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, set the Dynamics > Time Constant parameter to No time constant - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\author{
Simscape Blocks
}

Piston | Piston Engine

\section*{Topics}
"Complete Vehicle Model"
"Adjust Model Fidelity"
"Hydraulically-Actuated Driveline Clutch"
"Vehicle with Dual Clutch Transmission"
Vehicle with Four-Speed Transmission
"Vehicle with Four-Wheel Drive"
Vehicle with Manual Transmission
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
"Troubleshoot Engine Issues"

Introduced in R2011a

\section*{Harmonic Drive}

High-ratio speed reducer based on elastic deformation of an elliptical gear

\section*{Library}

Gears

\section*{Description}

This block represents a compact, high-ratio, speed reduction mechanism that contains three key components:
- Strain wave generator
- Elliptical gear
- Circular ring gear

The strain wave generator comprises an elliptical plug mated to a raced ball bearing. It sits inside an elastic metal gear, deforming it into a slight elliptical pattern. Rotation of the elliptical pattern in the body of the gear constitutes a strain wave.

The elliptically deformed gear engages the internal teeth of a fixed circular ring gear of only slightly larger diameter. Meshing occurs concurrently at the two elongated ends of the elliptical gear. This design doubles the teeth in mesh, boosting the torque capacity of the drive system.


During normal operation, the base shaft drives the strain wave generator. The elliptical plug spins freely inside the elastic metal gear, propagating the strain wave about the gear rotation axis. This strain wave causes the elliptical gear teeth to engage the internal teeth of the circular ring gear progressively.

The internal meshing between the two gears causes the elliptical gear axis to spin counter to the elliptical strain wave. For every clockwise rotation that the strain wave generator completes, the elliptical gear axis rotates counterclockwise by a small amount.

Large reduction ratios arise from the near-equal gear tooth numbers. The effective gear reduction ratio is:
\[
r=\frac{n_{\mathrm{E}}}{n_{\mathrm{C}}-n_{\mathrm{E}}},
\]
where:
- \(r\) is the gear reduction ratio.
- \(n_{C}\) is the tooth number of the circular ring gear.
- \(n_{\mathrm{E}}\) is the tooth number of the deformable elliptical gear.

Optional parameters account for power losses due to gear meshing and viscous friction. The Simple Gear block provides the foundation for this block. For more information, see Simple Gear.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline B & Conserving rotational port representing the base shaft \\
\hline F & Conserving rotational port representing the follower shaft \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Number of teeth on elliptical gear}

Total number of teeth protruding outward from the elliptical gear perimeter. This number should be slightly smaller than the number of teeth on the circular ring gear. The ratio of the two gear tooth numbers defines the relative angular velocities of the base and follower shafts. The default value is 100 .

\section*{Number of teeth on circular gear}

Number of teeth protruding inward from the circular ring gear perimeter. This number should be slightly larger than the number of teeth on the elliptical gear. The ratio of the two gear tooth numbers defines the relative angular velocities of the base and follower shafts. The default value is 102 .

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

List of friction models at various precision levels for estimating power losses due to meshing.
- No meshing losses - Suitable for HIL simulation - Neglect friction between gear cogs. Meshing is ideal.
- Constant efficiency - Reduce torque transfer by a constant efficiency factor. This factor falls in the range \(0<\eta \leq 1\) and is independent of load. Selecting this option exposes additional parameters.

\section*{Constant efficiency}

\section*{Efficiency}

Torque transfer efficiency \((\eta)\) between base and follower shafts. This parameter is inversely proportional to the meshing power losses. Values can range from 0 to 1 . The default value is 0.95 .

\section*{Follower power threshold}

Absolute value of the follower shaft power above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor from zero when at rest to the full efficiency value at the power threshold.

As a guideline, the power threshold should be lower than the expected power transmitted during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values might, however, raise the computational cost of simulation. The default value is 0.001 W .
- Load-dependent efficiency - Reduce torque transfer by a variable efficiency factor. This factor falls in the range \(0<\eta<1\) and varies with the torque load. Selecting this option exposes additional parameters.

\section*{Load-Dependent Efficiency}

Input shaft torque at no load
Net torque ( \(\tau_{\text {idle }}\) ) acting on the input shaft in idle mode, e.g., when torque transfer to the output shaft equals zero. For nonzero values, the power input in idle mode completely dissipates due to meshing losses. The default value is \(0.1 N^{*}\) m.

\section*{Nominal output torque}

Output torque ( \(\tau_{\mathrm{F}}\) ) at which to normalize the load-dependent efficiency. The default value is \(5 \mathrm{~N}^{*} \mathrm{~m}\).

\section*{Efficiency at nominal output torque}

Torque transfer efficiency \((\eta)\) at the nominal output torque. Efficiency values must fall in the interval [0, 1]. Larger efficiency values correspond to greater torque transfer between the input and output shafts. The default value is 0.95 .

\section*{Follower angular velocity threshold}

Absolute value of the follower shaft angular velocity above which the full efficiency factor is in effect \(\left(\omega_{\mathrm{F}}\right)\). Below this value, a hyperbolic tangent function smooths the efficiency factor to one, lowering the efficiency losses to zero when at rest.

As a guideline, the angular velocity threshold should be lower than the expected angular velocity during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values might, however, raise the computational cost of simulation.

The default value is \(0.01 \mathrm{rad} / \mathrm{s}\).

\section*{With Thermal Port}

\section*{Friction model}

Choice of model for representing friction. The model can incorporate the temperature and load dependences of friction or just the temperature dependence. The default setting is Temperature-dependent efficiency.

\section*{Temperature}

Array of temperatures used to construct an efficiency lookup table. The array values must increase from left to right. The temperature array must be the same size as the efficiency array in temperature-dependent models. It must be the same size as a single row of the efficiency matrix in temperature-and-load-dependent models. The default array is [280 300 320] K.

\section*{Load at elliptical gear}

Array of elliptical-gear loads used to construct a 2-D temperature-load-efficiency lookup table for temperature-and-load-dependent efficiency models. The array values must increase from left to right. The load array must be the same size as a single column of the efficiency matrix. The default array is [ \(\left.\begin{array}{lll}1 & 5 & 10\end{array}\right]\) N*m.

\section*{Efficiency}

Array of efficiencies used to construct a 1-D temperature-efficiency lookup table for temperature-dependent efficiency models. The array elements are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size.

This parameter appears only when you select a temperature-dependent friction model. The default array is [0.95 0.9 0.85].

\section*{Efficiency matrix}

Matrix of component efficiencies used to construct a 2-D temperature-load-efficiency lookup table. The matrix elements are the efficiencies at the temperatures in the Temperature array and at the loads in the Load at elliptical gear array.

The number of rows must be the same as the number of elements in the Temperature array. The number of columns must be the same as the number of elements in the Load at elliptical gear array.

This parameter appears only when you select a temperature-and-load-dependent efficiency model. The default matrix is [ \(0.850 .80 .75 ; 0.950 .90 .85 ; 0.85\) 0.80 .7 ].

\section*{Follower power threshold}

Visible only if you select Temperature-dependent efficiency as the friction model. Absolute value of the follower shaft power above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero when at rest and the value provided by the temperature-efficiency lookup table when at the power threshold. The default value is 0.001 W .

\section*{Follower angular velocity threshold}

Visible only if you select Temperature and load-dependent efficiency as the friction model. Absolute value of the follower shaft angular velocity above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor to one, lowering the efficiency losses to zero when at rest. The default value is \(0.01 \mathrm{rad} / \mathrm{s}\).

\section*{Viscous Losses}

\section*{Viscous friction coefficients at base (B) and follower (F)}

Two-element array with the viscous friction coefficients in effect at the base and follower shafts. The default array, [0 0] N*m/(rad/s), corresponds to zero viscous losses.

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

\section*{Simscape Blocks}

Cycloidal Drive | Simple Gear | Simple Gear with Variable Efficiency

\author{
Topics \\ "Model Thermal Losses in Driveline Components" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
}

\section*{Introduced in R2014a}

\section*{Leadscrew}

Leadscrew gear set of threaded rotating screw and translating nut, with adjustable thread and friction losses


\section*{Library}

Simscape / Driveline / Gears / Rotational-Translational

\section*{Description}

The Leadscrew block represents a threaded rotational-translational gear that constrains the two connected driveline axes, screw (S) and nut( N ), to, respectively, rotate and translate together in a fixed ratio that you specify. You can choose whether the nut axis translates in a positive or negative direction, as the screw rotates in a positive right-hand direction. If the screw helix is right-hand, \(\omega_{\mathrm{S}}\) and \(v_{\mathrm{N}}\) have the same sign. If the screw helix is left-hand, \(\omega_{\mathrm{S}}\) and \(v_{\mathrm{N}}\) have opposite signs. For model details, see "Leadscrew Gear Model" on page 1-326.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Leadscrew Gear Model}

\section*{Ideal Gear Constraint and Gear Ratio}

Leadscrew imposes one kinematic constraint on the two connected axes:
\(\omega_{\mathrm{S}} L\)
\(=\)
\(2 \pi v_{N}\)

The transmission ratio is \(R_{\mathrm{NS}}=2 \pi / L . L\) is the screw lead, the translational displacement of the nut for one turn of the screw. In terms of this ratio, the kinematic constraint is:
\(\omega_{\mathrm{S}} \quad=\quad R_{\mathrm{NS}} v_{\mathrm{N}}\)
The two degrees of freedom are reduced to one independent degree of freedom. The forward-transfer gear pair convention is \((1,2)=(S, N)\).

The torque-force transfer is:
\(\begin{array}{lllllll}R_{\mathrm{NS}} \tau_{\mathrm{S}} & + & F_{\mathrm{N}} & - & F_{\text {loss }} & = & 0\end{array}\)
with \(F_{\text {loss }}=0\) in the ideal case.

\section*{Nonideal Gear Constraint and Losses}

In the nonideal case, \(F_{\text {loss }} \neq 0\). For general considerations on nonideal gear modeling, see "Model Gears with Losses".

\section*{Geometric Surface Contact Friction}

In the contact friction case, \(\eta_{\text {SN }}\) and \(\eta_{\mathrm{NS}}\) are determined by:
- The screw-nut threading geometry, specified by lead angle \(\lambda\) and acme thread halfangle \(\alpha\).
- The surface contact friction coefficient \(k\).
\begin{tabular}{lllllll}
\(\eta_{\mathrm{SN}}\) & \(=\) & \((\cos \alpha\) & - & \(k \cdot \tan \alpha) /(\cos \alpha\) & + & \(k / \tan \lambda)\) \\
\(\eta_{\mathrm{NS}}\) & \(=\) & \((\cos \alpha\) & - & \(k / \tan \lambda) /(\cos \alpha\) & + & \(k \cdot \tan \alpha)\)
\end{tabular}

\section*{Constant Efficiencies}

In the constant efficiency case, you specify \(\eta_{\mathrm{SN}}\) and \(\eta_{\mathrm{NS}}\), independently of geometric details.

\section*{Self-Locking and Negative Efficiency}
\(\eta_{\text {NS }}\) has two distinct regimes, depending on lead angle \(\lambda\), separated by the self-locking point at which \(\eta_{\mathrm{NS}}=0\) and \(\cos \alpha=k / \tan \lambda\).
- In the overhauling regime, \(\eta_{\mathrm{NS}}>0\). The force acting on the nut can rotate the screw.
- In the self-locking regime, \(\eta_{\mathrm{NS}}<0\). An external torque must be applied to the screw to release an otherwise locked mechanism. The more negative is \(\eta_{\mathrm{NS}}\), the larger the torque must be to release the mechanism.
\(\eta_{\text {SN }}\) is conventionally positive.

\section*{Meshing Efficiency}

The efficiencies \(\eta\) of meshing between screw and nut are fully active only if the transmitted power is greater than the power threshold.

If the power is less than the threshold, the actual efficiency is automatically regularized to unity at zero velocity.

\section*{Viscous Friction Force}

The viscous friction coefficient \(\mu\) controls the viscous friction torque experienced by the screw from lubricated, nonideal gear threads. The viscous friction torque on a screw driveline axis is \(-\mu_{\mathrm{S}} \omega_{\mathrm{S}} . \omega_{\mathrm{S}}\) is the angular velocity of the screw with respect to its mounting.

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline S & \begin{tabular}{l} 
Rotational conserving port representing the \\
screw
\end{tabular} \\
\hline N & \begin{tabular}{l} 
Translational conserving port representing \\
the nut
\end{tabular} \\
\hline H & \begin{tabular}{l} 
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Screw lead}

Translational displacement \(L\) of the nut per revolution of the screw. The default is 0.015 .

From the drop-down list, choose units. The default is meters (m).

\section*{Screw helix type}

Choose the directional sense of screw rotation corresponding to positive nut translation. The default is Right-hand. The alternate option is Left-hand.

\section*{Meshing Losses}

Parameters for vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement from nonideal meshing of gear threads. The default is No meshing losses - Suitable for HIL simulation.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque and force between screw and nut is reduced by friction. If you select this option, the panel expands.

\section*{Constant Efficiency}

\section*{Friction parametrization}

Select how to characterize the friction between gear threads. The default is Friction coefficient and geometrical parameters.
- Friction coefficient and geometrical parameters - Friction is determined by contact friction between surfaces.

\section*{Lead angle}

Thread helix angle \(\lambda=\arctan [L /(\Pi d)]\). \(d\) is the mean thread diameter. Must be greater than zero. The default is 15 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Acme thread half angle}

Half-angle of the acme thread \(\alpha\) in the normal plane. If a square thread is simulated, \(\alpha=0\). Must be greater than zero. The default is 14.5 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Friction coefficient}

Dimensionless coefficient of kinetic friction in the thread. Must be greater than zero. The default is 0.08 .
- Efficiencies - Friction is determined by constant efficiencies \(0<\eta<\) 1. If you select this option, the panel changes from its default.

\section*{Efficiencies}

\section*{Screw-nut efficiency}

Efficiency \(\eta_{\text {SN }}\) of the power transfer from screw to nut.

\section*{Nut-screw efficiency}

Efficiency \(\eta_{\mathrm{NS}}\) of the power transfer from nut to screw.

\section*{Power threshold}

Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the efficiency losses to zero when no power is transmitted. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase from left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Screw-nut efficiency}

Array of component efficiencies with the screw as the driver-that is, with power flowing from the screw to the nut. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.75 0.7 0.65].

\section*{Nut-screw efficiency}

Array of component efficiencies with the nut as the driver-that is, with power flowing from the nut to the screw. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.5 0.45 0.4].

\section*{Power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{S}}\) for the screw. The default is 0 .
From the drop-down list, choose units. The default is newton-meters/(radians/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Simscape Blocks
Rack \& Pinion | Worm Gear

\author{
Topics \\ "Basic Motion, Torque, and Force Modeling" \\ "Ratchet Leadscrew Mechanism" \\ "Model Thermal Losses in Driveline Components" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
}

Introduced in R2011a

\title{
Limited-Slip Differential
}

Reduce velocity difference between two connected shafts
Library: Simscape / Driveline / Gears


\section*{Description}

The Limited-Slip Differential block represents a limited-slip differential (LSD), which is a gear assembly that can reduce the velocity difference between two connected shafts. The block models the LSD mechanism as a structural component that combines a differential gear and a clutch.

The differential component in the LSD block is an open differential. An open differential is a gear mechanism that allows two driven shafts to spin at different speeds. In an automobile, a differential allows the inner wheels to spin more slowly than the outer wheels when the vehicle is cornering. A vehicle that has wheel shafts that are connected by an open differential can get stuck when only one of the wheels slips and then spins freely due to traction loss. This vehicle stops moving because the driveshaft supplies less power to the wheel with traction than it supplies to the spinning wheel.

In the same scenario, a vehicle that has an LSD is less likely to get stuck because it contains a clutch assembly that can transmit power to the wheel that retains traction. The clutch component in the LSD block is a friction clutch that has two sets of flat friction plates. The clutch engages when applied pressure exceeds the engagement threshold pressure. In an LSD, a spring preload that separates the sun gears presses the plates in both sets together. When the wheels experience a traction differential, the planet pinion gears exert an additional force in the direction of the high-traction wheel. If the additional pressure exceeds the engagement threshold, the clutch assembly engages. The engagement allows the driveshaft to transmit more power to the slower-spinning hightraction wheel. The additional power reduces the difference in velocity of the two shafts. Because the high-traction wheel continues to rotate, the vehicle continues to move.

The figure shows the orientation of the major components in an LSD mechanism.


The Limited-Slip Differential block models the LSD mechanism as a structural component based on the Simscape Driveline Differential and Disk Friction Clutch blocks. The differential mechanism modeled by the Differential block is a structural component based on two other Simscape Driveline blocks, the Simple Gear and the Sun-Planet Bevel. The block diagram shows the structural components of the LSD.


The ports of the Limited-Slip Differential block are associated with the driveshaft (port D) and the two driven shafts (ports S1 and S2), which connect the sun-gears to the wheels.

The block enables you to specify inertias only for the gear carrier and internal planet gears. By default, the inertias of the outer gears are assumed negligible. To model the inertias of the outer gears, connect Simscape Inertia blocks to the D, S1, and S2 ports.

The table shows the rotation direction of the driven shaft ports for different block parameterizations and input conditions.
\begin{tabular}{|c|c|c|c|}
\hline Rotation Direction of the driven shaft ports (S1 and S2) & Crown Gear Location Relative to the Centerline & Rotation Direction of Driveshaft Port (D) & Relative Slippage Across the Differential \\
\hline Positive & Right & Positive & 0 \\
\hline \begin{tabular}{l}
- Positive for the nonslipping port \\
- Negative the slipping port
\end{tabular} & Right & Positive & > 0 \\
\hline Negative & Right & Negative & 0 \\
\hline \begin{tabular}{l}
- Negative for the nonslipping port \\
- Positive the slipping port
\end{tabular} & Right & Negative & > 0 \\
\hline Negative & Left & Positive & 0 \\
\hline \begin{tabular}{l}
- Negative for the nonslipping port \\
- Positive the slipping port
\end{tabular} & Left & Positive & > 0 \\
\hline Positive & Left & Negative & 0 \\
\hline \begin{tabular}{l}
- Positive for the nonslipping port \\
- Negative the slipping port
\end{tabular} & Left & Negative & > 0 \\
\hline
\end{tabular}

\section*{Model}

To examine the mathematical models for the structural components of the Limited-Slip Differential block, see:
- Disk Friction Clutch
- Differential
- Simple Gear
- Sun-Planet Bevel

\section*{Port Options}

The Limited-Slip Differential block offers these port options:
- No thermal port (default)
- Show thermal port

To model thermal losses, select Show thermal port. Thermal ports are conserving ports that you can connect to thermal conserving ports on Simscape Foundation Thermal Library blocks for simulating heat flow and temperature changes. For more information, see "Model Thermal Losses in Driveline Components".

To view or select a port option, use one of these methods:
- Use the block context menu:

1 Left-click the block.
2 From the context menu, select Simscape > Block choices.
3 Select option from the drop-down menu.
- Use the Property Inspector:

1 From the Simulink Editor menu, select View > Property Inspector.
2 Click the block.
3 In the Property Inspector pane, click the Block Choice VALUE.
4 Select an option from the drop-down menu.

\section*{Dependencies}

These parameters are enabled only if you select No thermal port:
- Friction Model
- Static friction coefficient

These parameters are enabled only if you select Show thermal port:
- Temperature Sun-sun efficiency
- Sun-sun efficiency
- Carrier-driveshaft efficiency
- Sun-carrier and driveshaft-casing power thresholds
- Sun-carrier and driveshaft-casing viscous friction coefficients
- Kinetic friction coefficient matrix
- Static friction coefficient vector
- Thermal mass
- Initial temperature

\section*{Ports}

\section*{Conserving}

\section*{D - Driving shaft interface \\ mechanical rotational}

Port associated with the driveshaft.

\section*{S2, S2 - Driven shaft interfaces}
mechanical rotational
Ports associated with the two sun-gear shafts.

\section*{H - Heat exchange}
thermal
Port associated with heat flow. The thermal port is optional and is hidden by default.

\section*{Dependencies}

To enable this port, for Block Choice, select Show thermal port.

\section*{Parameters}

\section*{Differential}

\section*{Crown gear location - Driveshaft location}

To the right of centerline (default)|To the left of centerline
Location of the bevel crown gear regarding the centerline of the gear assembly.
```

Carrier (C) to driveshaft (D) teeth ratio (NC/ND) - Gear ratio 4 (default)

```

Fixed ratio, \(g_{\mathrm{D}}\), of the carrier gear to the longitudinal driveshaft gear.

\section*{Friction model - Frictional loss}

No meshing losses - Suitable for HIL simulation (default)|Constant efficiency

Select whether to consider frictional losses from nonideal meshing of gear teeth:
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal and losses are assumed negligible.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\).

You can increase the fidelity of your model by specifying meshing losses. For hardware-in-the-loop simulation, however, if your model is not real-time capable, consider ignoring the frictional losses. For more information on balancing speed and fidelity for real-time simulation using Simscape models, see "Improving Speed and Accuracy" (Simscape).

\section*{Dependencies}

To enable this parameter, for Block Choice, select No thermal port.
Selecting Constant efficiency enables these parameters:
- Sun-sun and carrier-driveshaft ordinary efficiencies
- Sun-carrier and driveshaft-casing power thresholds
- Sun-carrier and driveshaft-casing viscous friction coefficients

\section*{Sun-sun and carrier-driveshaft ordinary efficiencies - Torque transfer efficiency}
[0.85, 0.92] (default)
Vector of torque transfer efficiencies [ \(\eta_{\text {SS }} \eta_{\mathrm{D}}\) ] for sun-sun and carrier-longitudinal driveshaft gear wheel pair meshings, respectively.

\section*{Dependencies}

To enable this parameter:
1 For Block choice, select No thermal port.
2 For Friction model, select Constant efficiency.

\section*{Temperature - Component temperature}
[280.0, 300.0, 320.0] W (default)
Array of temperatures used to construct 1-D temperature-efficiency lookup tables. The array values must increase left to right. The temperature array must be the same size as each efficiency array.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Sun-sun efficiency - Mechanical efficiency [0.95, 0.9, 0.85] (default)}

Array of mechanical efficiencies with power flowing from one of the sun gears to the other. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Carrier-driveshaft efficiency - Mechanical efficiency [0.95, 0.9, 0.85] (default)}

Array of mechanical efficiencies with power flowing from the gear carrier to the longitudinal driveshaft. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Sun-carrier and driveshaft-casing power thresholds - Efficiency boundary}
```

[0.001, 0.001] W (default)

```

Vector of power thresholds \(p_{t h}\) above which full efficiency loss is applied, for sun-carrier and longitudinal driveshaft-casing [ \(p_{\mathrm{S}} p_{\mathrm{D}}\) ], respectively. A hyperbolic tangent function smooths the efficiency factors between zero when at rest and the values provided by the temperature-efficiency lookup tables at the power thresholds.

\section*{Dependencies}

To enable this parameter:
1 For Block choice, select No thermal port.
2 For Friction model, select Constant efficiency.
or for Block choice, select Show thermal port.
Sun-carrier and driveshaft-casing viscous friction coefficients -
Component viscosity [0.0, 0.0] \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default)

Vector of viscous friction coefficients [ \(\mu_{\mathrm{S}} \mu_{\mathrm{D}}\) ] for the sun-carrier and longitudinal driveshaft-casing gear motions, respectively.

\section*{Dependencies}

To enable this parameter:
1 For Block choice, select No thermal port.
2 For Friction model, select Constant efficiency.
or for Block choice, select Show thermal port.

\section*{Carrier inertia - Moment of inertia}
\(0 \mathrm{~kg}{ }^{*} \mathrm{~m}^{\wedge} 2\) (default)
Moment of inertia of the planet gear carrier. This value must be positive or zero. To ignore carrier ring inertia, enter 0.

\section*{Planet inertia - Moment of inertia}
\(0 \mathrm{~kg}{ }^{*} \mathrm{~m}^{\wedge} 2\) (default)
Moment of inertia of the combined planet gears. This value must be positive or zero. To ignore planet gear inertia, enter 0 .

\section*{Clutch}

Number of friction surfaces - Number of contact surfaces 4 (default)

Number, \(N\), of friction-generating contact surfaces inside the clutch.

\section*{Effective torque radius - Friction force application radius 130 mm (default)}

Effective moment arm radius, \(r_{\text {eff }}\), that determines the kinetic friction torque inside the clutch.

\section*{Preload force - Clutch plate engagement pressure 300 N (default)}

Preload force that the spring exerts on the clutch plate assemblies. Must be greater than or equal to zero.

Kinetic friction coefficient relative velocity vector - Absolute surface velocity
```

[0.0, 100.0, 1000.0] rad/s (default)

```

Specify input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

Kinetic friction coefficient vector - Coulomb coefficient of friction, \(\boldsymbol{k}_{\mathbf{K}}\) [0.3, 0.22, 0.19] (default)|. For a block choice that shows the thermal port, the default value is \([0.3,0.28,0.25]\)

Specify the output values for the kinetic friction coefficient as a vector. All values must be greater than zero.

Kinetic friction coefficient matrix - Coulomb coefficient of friction, \(\boldsymbol{k}_{\mathbf{K}}\) [0.34, 0.32, 0.3; 0.3, 0.28, 0.25; 0.25, 0.2, 0.15] (default)

The coefficient of kinetic friction must be greater than zero.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Static friction coefficient vector - Coulomb coefficient of friction, \(\boldsymbol{k}_{\mathbf{s}}\) [0.4, 0.38, 0.36] (default)}

Specify the static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Friction coefficient interpolation method - Output value approximation method}

Linear (default) | Smooth
Interpolation methods for approximating the output value when the input value is between two consecutive grid points. To optimize performance, select Linear. To produce a continuous curve with continuous first-order derivatives, select Smooth.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Friction coefficient extrapolation method - Output value approximation method \\ Linear (default) | Nearest}

Extrapolation methods for approximating the output value when the input value is outside the range specified in the argument list. To produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region, select Linear. To produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data, select Nearest.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Static friction coefficient - Coulomb coefficient of friction, \(\boldsymbol{k}_{\mathbf{s}}\)} 0.35 (default)

Dimensionless Coulomb static friction coefficient, \(k_{\mathrm{S}}\), applied to the normal force across the clutch when the clutch is locked. The static friction coefficient, \(k_{\mathrm{S}}\), must be larger than the kinetic friction coefficient, \(k_{K}\).

\section*{Dependencies}

To enable this parameter, for Block Choice, select No thermal port.

\section*{Velocity tolerance - Slip velocity locking boundary}
\(0.001 \mathrm{rad} / \mathrm{s}\) (default)
Maximum slip velocity at which the clutch can lock. The slip velocity is the signed difference between the base and follower shaft angular velocities, that is, \(w=w_{F}-w_{B}\).

When the kinetic friction torque is nonzero and the transferred torque is within the static friction torque limits, then the clutch locks if the actual slip velocity falls below the velocity tolerance.

\section*{Initial state - Initial clutch state \\ Unlocked (default) | Locked}

Clutch state at the start of simulation. The clutch can be in one of two states, locked and unlocked. A locked clutch constrains the base and follower shafts to spin at the same velocity, that is, as a single unit. An unlocked clutch allows the two shafts to spin at different velocities, resulting in slip between the clutch plates.

\section*{Thermal Port}

\section*{Thermal mass - Component resistance to temperature change 50 J/K (default)}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Initial temperature - Component initial temperature 300 K (default)}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses.

\section*{Dependencies}

To enable this parameter, for Block choice, select Show thermal port.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\author{
Simscape Blocks \\ Differential | Disk Friction Clutch | Simple Gear | Sun-Planet Bevel
}

\section*{Topics}
"Model Thermal Losses in Driveline Components"
"Basic Motion, Torque, and Force Modeling"

\section*{Introduced in R2017a}

\title{
Loaded-Contact Rotational Friction
}

Loaded-contact friction between two rotating surfaces
Library: Simscape / Driveline / Brakes \& Detents / Rotational


\section*{Description}

The Loaded-Contact Rotational Friction block simulates friction between two rotating surfaces loaded with a normal force.

The block is implemented as a structural component based on the Fundamental Friction Clutch block. From the locked state, the two surfaces unlock if the transmitted torque exceeds the static friction, as defined by the static coefficient of friction and current normal force. For details on how the locking and unlocking are modeled, see the Fundamental Friction Clutch block reference page.

Torque is transmitted for normal forces larger than the Threshold force parameter.

\section*{Equations}

The block simulates friction between two rotating surfaces loaded with a normal force. When the two rotating surfaces are not locked, the transmitted torque is determined with the following equations:
\[
\begin{aligned}
& \tau=N \cdot \mu \cdot r_{\mathrm{eff}} \cdot \operatorname{sign}(\omega)+\tau_{\mathrm{visc}} \\
& r_{\mathrm{eff}}=\frac{2}{3} \cdot \frac{r_{o}^{3}-r_{i}^{3}}{r_{o}^{2}-r_{i}^{2}}, \\
& \tau_{\mathrm{visc}}=\mu_{\mathrm{visc}} \cdot \omega
\end{aligned}
\]
where:
- \(\tau\) is the transmitted torque.
- \(N\) is the normal force.
- \(\mu\) is the friction coefficient.
- \(r_{e f f}\) is the effective radius.
- \(r_{o}\) is the surface outside radius.
- \(r_{i}\) is the surface inside radius.
- \(\omega\) is the relative angular velocity.
- \(\tau_{\text {visc }}\) is the viscous drag torque.
- \(\mu_{\text {visc }}\) is the viscous drag torque coefficient.

\section*{Velocity-Dependent Model}

You can model the effects of rotational velocity change by selecting a velocity-dependent model. To choose a velocity-dependent model, in the Friction settings, set the Friction model parameter to Velocity-dependent kinetic friction coefficient. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-347.

For the velocity-dependent model these related parameters become visible in the Friction settings:
- Relative velocity vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method

\section*{Thermal Model}

You can model the effects of heat flow and temperature change by selecting a temperature-dependent model. To choose a temperature-dependent model, in the Friction settings, set the Friction model parameter to Temperature-dependent friction coefficients. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-347.

For the temperature-dependent model, thermal port \(\mathbf{H}\) and these settings are visible:
- In the Friction settings:
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

\section*{Thermal, Velocity-Dependent Model}

You can model the effects of rotational velocity change and heat flow by selecting a velocity-dependent and temperature-dependent model. To choose a model that depends on both velocity and temperature, in the Friction settings, set the Friction model parameter to Temperature and velocity-dependent friction coefficients.

For the velocity-dependent and temperature-dependent model, thermal port \(\mathbf{H}\) and these related settings and parameters become visible:
- In the Friction settings:
- Relative velocity vector
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient matrix
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

\section*{Limitations and Assumptions}
- The model does not account for inertia. Add inertia terms externally to the \(\mathbf{B}\) and \(\mathbf{F}\) ports as required.
- The model computes the torque assuming a uniform distribution of the normal force.

\section*{Ports}

\section*{Input}

\section*{N - Normal force}
physical signal
Physical signal port associated with the normal force. This signal is positive or zero. A signal of less than zero is interpreted as zero.

\section*{Conserving}

\section*{B - Base}
mechanical rotational
Rotational conserving port associated with the driving (base) surface.

\section*{F - Follower}
mechanical rotational
Rotational conserving port associated with the driven (follower) surface.

\section*{H - Heat flow}

\section*{thermal}

Thermal conserving port associated with heat flow.

\section*{Dependencies}

This port is visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see "Friction model" on page 1-0 and Friction Parameter Dependencies.

\section*{Parameters}

\section*{Geometry}

\section*{Geometry model - Parameterization method}

Define effective radius (default)|Define annular region
Parameterization method for the loaded-contact friction model:
- Define effective radius - Provide a value for the friction effective radius.
- Define annular region - Define the friction effective radius in terms of the inside and outside diameters of the friction surface. If you select this option, the panel changes from its default.

\section*{Dependencies}

The value of this parameter affects the visibility of other parameters in the Geometry settings.

\section*{Effective torque radius - Effective friction surface radius 130 mm (default) | positive scalar}

Effective radius \(r_{\text {eff }}\). The value must be greater than zero.

\section*{Dependencies}

This parameter is visible only if the Geometry model parameter is set to Define effective radius.

Friction surface outside diameter - Friction surface outer diameter 150 mm (default) | positive scalar

Outside diameter, \(2 * r_{o}\), of the friction surfaces. Must be greater than zero.

\section*{Dependencies}

This parameter is visible only if the Geometry model parameter is set to Define annular region.

Friction surface inside diameter - Friction surface inner diameter 100 mm (default) | positive scalar less than outer diameter

Inside diameter, \(2 * r_{i}\), of the friction surfaces. Must be greater than zero, but less than the friction surface outside diameter.

\section*{Dependencies}

This parameter is visible only if the Geometry model parameter is set to Define annular region.

\section*{Friction}

The table shows how the visibility of some ports, parameters, and settings depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Friction Parameter Dependencies
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Friction} \\
\hline \multicolumn{4}{|l|}{Friction model} \\
\hline \multirow[t]{2}{*}{Fixed kinetic friction coeffici ent} & \multirow[t]{2}{*}{Velocity-dependent kinetic friction coefficient} & Temperaturedependent friction coefficients & ```
Temperature and
velocity-dependent
friction
coefficients
``` \\
\hline & & \begin{tabular}{l}
Exposes: \\
- Conserving port H \\
- Thermal parameters in the Friction settings \\
- Thermal Port settings
\end{tabular} & \begin{tabular}{l}
Exposes: \\
- Conserving port \(\mathbf{H}\) \\
- Thermal parameters in the Friction settings \\
- Thermal Port settings
\end{tabular} \\
\hline - & - & Temperature vector & Temperature vector \\
\hline - & Relative velocity vector & & Relative velocity vector \\
\hline Static friction coefficien t & Static friction coefficient & Static friction coefficient vector & Static friction coefficient vector \\
\hline Kinetic friction coefficien t & Kinetic friction coefficient vector & Kinetic friction coefficient vector & Kinetic friction coefficient matrix \\
\hline - & Friction coefficient interpolation method & Friction coefficient interpolation method & Friction coefficient interpolation method \\
\hline - & Friction coefficient extrapolation method & Friction coefficient extrapolation method & Friction coefficient extrapolation method \\
\hline Velocity tolerance & Velocity tolerance & Velocity tolerance & Velocity tolerance \\
\hline Threshold force & Threshold force & Threshold force & Threshold force \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Friction & & \\
\hline \begin{tabular}{l}
Viscous \\
drag \\
torque \\
coefficien \\
t
\end{tabular} & \begin{tabular}{l}
Viscous drag torque \\
coefficient
\end{tabular} & \begin{tabular}{l}
Viscous drag torque \\
coefficient
\end{tabular} & \begin{tabular}{l}
Viscous drag torque \\
coefficient
\end{tabular} \\
\hline
\end{tabular}

\section*{Friction model - Friction model}

Fixed kinetic friction coefficient (default)|Velocity-dependent kinetic friction coefficient|Temperature-dependent friction coefficients| Temperature and velocity-dependent friction coefficients

Parameterization method to model the kinetic friction coefficient. The options and default values for this parameter depend on the friction model that you select for the block. The options are:
- Fixed kinetic friction coefficient - Provide a fixed value for the kinetic friction coefficient.
- Velocity-dependent kinetic friction coefficient - Define the kinetic friction coefficient by one-dimensional table lookup based on the relative angular velocity between disks.
- Temperature-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature.
- Temperature and velocity-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature and the relative angular velocity between disks.

\section*{Dependencies}

The friction model setting affects the visibility of other parameters, settings, and ports. For more information, see Friction Parameter Dependencies.

\section*{Relative velocity vector - Relative velocity}
[0, 100, 1000] rad/s (default)| vector
Input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocitydependent kinetic friction coefficient or Temperature and velocitydependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Temperature vector - Temperature}
[280, 300, 320] K (default) |increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Static friction coefficient - Static friction coefficient}
0.35 (default) | scalar

Static or peak value of the friction coefficient. The static friction coefficient must be greater than the kinetic friction coefficient.

\section*{Dependencies}
this parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

\section*{Static friction coefficient vector - Static friction coefficient [.4, .38, .36] (default)| vector}

Static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Temperature-dependent friction coefficients or Temperature and
velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Kinetic friction coefficient - Kinetic friction coefficient}

\section*{0.3 (default) | positve scalar}

The kinetic, or Coulomb, friction coefficient. The coefficient must be greater than zero.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Fixed kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

\section*{Kinetic friction coefficient vector - Kinetic friction coefficient [.3, .22, .19] (default)|[.3, .28, .25]|vector}

Output values for kinetic friction coefficient as a vector. All values must be greater than zero.

If the Friction model parameter is set to
- Velocity-dependent kinetic friction coefficient - The vector must have same number of elements as relative velocity vector.
- Temperature-dependent friction coefficients - The vector must have the same number of elements as the temperature vector.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocitydependent kinetic friction coefficient or Temperature-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient matrix - Kinetic friction coefficient [.34, .32, .3; .3, . 28, . 25 ; . 25, .2, .15] (default)|matrix

Output values for kinetic friction coefficient as a matrix. All the values must be greater than zero. The size of the matrix must equal the size of the matrix that is the result of the temperature vector \(\times\) the kinetic friction coefficient relative velocity vector.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Friction coefficient interpolation method - Extrapolation method Linear (default)|Smooth}

Interpolation method for approximating the output value when the input value is between two consecutive grid points:
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocitydependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Friction coefficient extrapolation method - Interpolation method Linear (default)|Nearest | Error}

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocity dependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Velocity tolerance - Relative velocity locking threshold}

\subsection*{0.001 rad/s (default) | scalar}

Relative velocity below which the two surfaces can lock. The surfaces lock if the torque across the \(\mathbf{B}\) and \(\mathbf{F}\) rotational ports is less than the product of the effective radius, the static friction coefficient, and the applied normal force.

\section*{Threshold force - Normal contact force threshold}

1 N (default) | scalar
The normal force applied to the physical signal port \(\mathbf{N}\) is applied to the contact only if the amount of force exceeds the value of the Threshold force parameter. Forces below the Threshold force are not applied, so there is no transmitted frictional torque.

\section*{Viscous Losses}

\section*{Viscous drag torque coefficient - Viscous drag torque} \(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default) | nonnegative scalar

Viscous drag coefficient, \(\mu_{\text {visc }}\), for computing the drag torque. The coefficient depends on the type of operating fluid, fluid temperature, and the maximum distance between the surfaces.

\section*{Initial Conditions}

\section*{Initial state - Initial clutch state \\ Unlocked (default) | Locked}

State of the internal Fundamental Friction Clutch block state at the start of simulation.
- Locked - Rotational ports \(\mathbf{B}\) and \(\mathbf{F}\) are initially locked together.
- Unlocked - Rotational ports \(\mathbf{B}\) and \(\mathbf{F}\) are initially sliding relative to each other.

\section*{Thermal Port}

Thermal Port settings are visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Thermal mass - Thermal mass \\ 50 kJ/K (default) | scalar}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Initial temperature - Initial temperature \\ 300 K (default) | scalar}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
See AlsoFundamental Friction Clutch | Loaded-Contact Translational Friction
Topics"Gear Coupling Control Using Clutches"
Introduced in R2011a

\title{
Loaded-Contact Translational Friction
}

\author{
Loaded-contact friction between two sliding surfaces \\ Library: Simscape / Driveline / Brakes \& Detents / Translational
}

\section*{Description}

The Loaded-Contact Translational Friction block simulates friction between two sliding surfaces loaded with a normal force.

The block is implemented as a structural component based on the Fundamental Friction Clutch block. From the locked state, the two surfaces unlock if the exerted force exceeds the static friction, as defined by the static coefficient of friction and current normal force. For details on how the locking and unlocking are modeled, see the Fundamental Friction Clutch block reference page.

Force is transmitted for normal forces larger than the Threshold force parameter.

\section*{Equations}

The block simulates friction between two sliding surfaces loaded with a normal force. When the two sliding surfaces are not locked, the friction force is determined with these equations:
\[
\begin{aligned}
& F=N \cdot \mu \cdot \operatorname{sign}\left(v_{\text {rel }}\right)+F_{\text {visc }}, \\
& F_{\text {visc }}=\mu_{\mathrm{visc}} \cdot v_{\text {rel }},
\end{aligned}
\]
where:
- \(F\) is the transmitted force.
- \(N\) is the normal force.
- \(\mu\) is the friction coefficient.
- \(v_{\text {rel }}\) is the relative velocity.
- \(F_{\text {visc }}\) is the viscous drag force.
- \(\mu_{\text {visc }}\) is the viscous drag force coefficient.

\section*{Velocity-Dependent Model}

You can model the effects of rotational velocity change by selecting a velocity-dependent model. To choose a velocity-dependent model, in the Friction settings, set the Friction model parameter to Velocity-dependent kinetic friction coefficient. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-89.

For the velocity-dependent model these related parameters become visible in the Friction settings:
- Relative velocity vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method

\section*{Thermal Model}

You can model the effects of heat flow and temperature change by selecting a temperature-dependent model. To choose a temperature-dependent model, in the Friction settings, set the Friction model parameter to Temperature-dependent friction coefficients. For information about a friction model that depends on both velocity and temperature, see "Thermal, Velocity-Dependent Model" on page 1-89.

For the temperature-dependent model, thermal port \(\mathbf{H}\) and these settings are visible:
- In the Friction settings:
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient vector
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

\section*{Thermal, Velocity-Dependent Model}

You can model the effects of rotational velocity change and heat flow by selecting a velocity-dependent and temperature-dependent model. To choose a model that depends on both velocity and temperature, in the Friction settings, set the Friction model parameter to Temperature and velocity-dependent friction coefficients.

For the velocity-dependent and temperature-dependent model, thermal port \(\mathbf{H}\) and these related settings and parameters become visible:
- In the Friction settings:
- Relative velocity vector
- Temperature vector
- Static friction coefficient vector
- Kinetic friction coefficient matrix
- Friction coefficient interpolation method
- Friction coefficient extrapolation method
- In the Thermal Port settings:
- Thermal mass
- Initial Temperature

\section*{Limitations and Assumptions}
- The model does not account for body mass. Add mass terms externally to the \(\mathbf{B}\) and \(\mathbf{F}\) ports as required.
- The model computes the transmitted force assuming a uniform distribution of the normal force.

\section*{Ports}

\section*{Input}

\section*{N - Normal force}
physical signal
Physical signal port associated with the normal force. This signal is positive or zero. A signal of less than zero is interpreted as zero.

\section*{Conserving}

B - Base
mechanical rotational
Rotational conserving port associated with the driving (base) surface.

\section*{F - Follower \\ mechanical rotational}

Rotational conserving port associated with the driven (follower) surface.

\section*{H - Heat flow}
thermal
Thermal conserving port associated with heat flow.

\section*{Dependencies}

This port is visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see "Friction model" on page 1-0 and Friction Parameter Dependencies.

\section*{Parameters}

\section*{Friction}

The table shows how the visibility of some ports, parameters, and settings depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Friction Parameter Dependencies
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Friction} \\
\hline \multicolumn{4}{|l|}{Friction model} \\
\hline \multirow[t]{2}{*}{Fixed kinetic friction coeffici ent} & \multirow[t]{2}{*}{Velocity-dependent kinetic friction coefficient} & Temperaturedependent friction coefficients & ```
Temperature and
velocity-dependent
friction
coefficients
``` \\
\hline & & \begin{tabular}{l}
Exposes: \\
- Conserving port H \\
- Thermal parameters in the Friction settings \\
- Thermal Port settings
\end{tabular} & \begin{tabular}{l}
Exposes: \\
- Conserving port \(\mathbf{H}\) \\
- Thermal parameters in the Friction settings \\
- Thermal Port settings
\end{tabular} \\
\hline - & - & Temperature vector & Temperature vector \\
\hline - & Relative velocity vector & & Relative velocity vector \\
\hline Static friction coefficien t & Static friction coefficient & Static friction coefficient vector & Static friction coefficient vector \\
\hline Kinetic friction coefficien t & Kinetic friction coefficient vector & Kinetic friction coefficient vector & Kinetic friction coefficient matrix \\
\hline - & Friction coefficient interpolation method & Friction coefficient interpolation method & Friction coefficient interpolation method \\
\hline - & Friction coefficient extrapolation method & Friction coefficient extrapolation method & Friction coefficient extrapolation method \\
\hline Velocity tolerance & Velocity tolerance & Velocity tolerance & Velocity tolerance \\
\hline Threshold force & Threshold force & Threshold force & Threshold force \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Friction & & \\
\hline \begin{tabular}{l} 
Viscous \\
drag \\
torque \\
coefficien \\
t
\end{tabular} & \begin{tabular}{l} 
Viscous drag torque \\
coefficient
\end{tabular} & \begin{tabular}{l} 
Viscous drag torque \\
coefficient
\end{tabular} & \begin{tabular}{l} 
Viscous drag torque \\
coefficient
\end{tabular} \\
\hline
\end{tabular}

\section*{Friction model - Friction model}

Fixed kinetic friction coefficient (default)|Velocity-dependent kinetic friction coefficient|Temperature-dependent friction coefficients| Temperature and velocity-dependent friction coefficients

Parameterization method to model the kinetic friction coefficient. The options and default values for this parameter depend on the friction model that you select for the block. The options are:
- Fixed kinetic friction coefficient - Provide a fixed value for the kinetic friction coefficient.
- Velocity-dependent kinetic friction coefficient - Define the kinetic friction coefficient by one-dimensional table lookup based on the relative angular velocity between disks.
- Temperature-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature.
- Temperature and velocity-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature and the relative angular velocity between disks.

\section*{Dependencies}

The friction model setting affects the visibility of other parameters, settings, and ports. For more information, see Friction Parameter Dependencies.

\section*{Relative velocity vector - Relative velocity}
[0, .1, 1] m/s (default) | vector
Input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocitydependent kinetic friction coefficient or Temperature and velocitydependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Temperature vector - Temperature}
[280, 300, 320] K (default) | increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Static friction coefficient - Static friction coefficient}
0.35 (default) | scalar

Static or peak value of the friction coefficient. The static friction coefficient must be greater than the kinetic friction coefficient.

\section*{Dependencies}
this parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

\section*{Static friction coefficient vector - Static friction coefficient [.4, .38, .36] (default)| vector}

Static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Temperature-dependent friction coefficients or Temperature and
velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Kinetic friction coefficient - Kinetic friction coefficient}

\section*{0.3 (default) | positve scalar}

The kinetic, or Coulomb, friction coefficient. The coefficient must be greater than zero.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Fixed kinetic friction coefficient. For more information, see Friction Parameter Dependencies.

\section*{Kinetic friction coefficient vector - Kinetic friction coefficient [.3, .22, .19] (default)|[.3, .28, .25]|vector}

Output values for kinetic friction coefficient as a vector. All values must be greater than zero.

If the Friction model parameter is set to
- Velocity-dependent kinetic friction coefficient - The vector must have same number of elements as relative velocity vector.
- Temperature-dependent friction coefficients - The vector must have the same number of elements as the temperature vector.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocitydependent kinetic friction coefficient or Temperature-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

Kinetic friction coefficient matrix - Kinetic friction coefficient [.34, .32, .3; .3, . 28, . 25; . 25, .2, .15] (default)|matrix

Output values for kinetic friction coefficient as a matrix. All the values must be greater than zero. The size of the matrix must equal the size of the matrix that is the result of the temperature vector \(\times\) the kinetic friction coefficient relative velocity vector.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Friction coefficient interpolation method - Extrapolation method Linear (default)|Smooth}

Interpolation method for approximating the output value when the input value is between two consecutive grid points:
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocitydependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Friction coefficient extrapolation method - Interpolation method Linear (default) | Nearest | Error}

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is only visible when you set the Friction model parameter to Velocity dependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Velocity tolerance - Relative velocity locking threshold}

\subsection*{0.001 m/s (default)| scalar}

Relative velocity below which the two surfaces can lock. The surfaces lock if the torque across the \(\mathbf{B}\) and \(\mathbf{F}\) rotational ports is less than the product of the effective radius, the static friction coefficient, and the applied normal force.

\section*{Threshold force - Normal contact force threshold}

1 N (default) | scalar
The normal force applied to the physical signal port \(\mathbf{N}\) is applied to the contact only if the amount of force exceeds the value of the Threshold force parameter. Forces below the Threshold force are not applied, so there is no transmitted frictional torque.

\section*{Viscous Losses}

\section*{Viscous drag torque coefficient - Viscous drag torque}
\(0 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\) (default) | nonnegative scalar
Viscous drag coefficient, \(\mu_{\text {visc }}\), for computing the drag torque. The coefficient depends on the type of operating fluid, fluid temperature, and the maximum distance between the surfaces.

\section*{Initial Conditions}

\section*{Initial state - Initial clutch state \\ Unlocked (default) | Locked}

State of the internal Fundamental Friction Clutch block state at the start of simulation.
- Locked - Rotational ports \(\mathbf{B}\) and \(\mathbf{F}\) are initially locked together.
- Unlocked - Rotational ports \(\mathbf{B}\) and \(\mathbf{F}\) are initially sliding relative to each other.

\section*{Thermal Port}

Thermal Port settings are visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Thermal mass - Thermal mass \\ 50 kJ/K (default) | scalar}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Initial temperature - Initial temperature \\ 300 K (default) | scalar}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

This parameter is only visible when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Friction Parameter Dependencies.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
See AlsoFundamental Friction Clutch | Loaded-Contact Rotational Friction
Topics"Gear Coupling Control Using Clutches"
Introduced in R2011a

\title{
Logic-Controlled Clutch
}

Friction clutch with binary input control
Library: Simscape / Driveline / Clutches

\section*{Description}

The Logic-Controlled Clutch is based on the Fundamental Friction Clutch block, which transmits rotational power through friction. The Logic-Controlled Clutch block is controlled by a binary input. When the input is 1 , the clutch engages, provides friction, and can lock. When the input is 0 , the clutch does not engage or provide friction and it cannot lock.

If the clutch is engaging and in motion, the block applies the kinetic torque. If the clutch is engaging and not in motion, it applies the static torque.

\section*{Ports}

\section*{Input}

\section*{E-Control clutch engagement}
physical signal
When the input is 1 , the clutch engages. When the input is 0 , the clutch does not engage.

\section*{Conserving}

B - Base interface
mechanical rotational
Mechanical rotational conserving port associated with the base interface.

\section*{F - Follower interface}
mechanical rotational

Mechanical rotational conserving port associated with the follower interface.

\section*{Parameters}

\section*{Kinetic friction torque - Rotational force for a moving clutch 10 N*m (default)}

Specify a value that is greater than or equal to zero for the nominal kinetic friction torque that the clutch applies when engaged and the clutch plates have relative motion.

\section*{Static friction torque - Rotational force for a nonmoving clutch 20 N*m (default)}

Specify a value that is greater than or equal to the nominal kinetic friction torque. When the clutch is locked, this amount of clutch is required to break the lock and allow the clutch plates to slip.

Clutch velocity tolerance - Motion boundary condition \(0.001 \mathrm{rad} / \mathrm{s}\) (default)

Specify a value that is greater than or equal to zero.

\section*{Initial State - Clutch condition at simulation start time Unlocked (default) | Locked}

Indicate whether the clutch is locked or unlocked when the simulation starts.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Cone Clutch | Disk Friction Clutch | Dog Clutch | Fundamental Friction Clutch

\section*{Introduced in R2016b}

\section*{Nonlinear Rotational Damper}

Rotational damper based on polynomial or table lookup parameterizations


\section*{Library}

Simscape / Driveline / Couplings \& Drives / Springs \& Dampers

\section*{Description}

The block represents a nonlinear rotational damper. Polynomial and table lookup parameterizations define the nonlinear relationship between damping torque and relative angular velocity. The damping torque can be symmetric or asymmetric about the zero velocity point. The block applies equal and opposite damping torques on the two rotational conserving ports.

The symmetric polynomial parameterization defines the damping torque for both positive and negative relative velocities according to the expression:
\[
T=b_{1} \omega+\operatorname{sign}(\omega) \cdot b_{2} \omega^{2}+b_{3} \omega^{3}+\operatorname{sign}(\omega) \cdot b_{4} \omega^{4}+b_{5} \omega^{5}
\]
where:
- T- Damping torque
- \(b_{1}, b_{2}, \ldots, b_{5}\) - Damping coefficients
- \(\omega\) - Relative angular velocity between ports R and \(\mathrm{C}, \omega=\omega_{R}-\omega_{C}\)
- \(\omega_{R}\) - Absolute angular velocity associated with port R
- \(\omega_{C}\) - Absolute angular velocity associated with port C

To avoid zero-crossings that slow simulation, eliminate the sign function from the polynomial expression by specifying an odd polynomial ( \(b_{2}, b_{4}=0\) ).

The two-sided polynomial parameterization defines the damping torque for both positive and negative relative velocities according to the expression:
\[
T=\left\{\begin{array}{l}
b_{1 p} \omega+b_{2 p} \omega^{2}+b_{3 p} \omega^{3}+b_{4 p} \omega^{4}+b_{5 p} \omega^{5}, \omega \geq 0 \\
b_{1 n} \omega+b_{2 n} \omega^{2}+b_{3 n} \omega^{3}+b_{4 n} \omega^{4}+b_{5 n} \omega^{5}, \omega<0^{\prime}
\end{array}\right.
\]
where:
- \(b_{1 p}, b_{2 p}, \ldots, b_{5 p}\) - Damping coefficients for positive relative velocities
- \(b_{1 n}, b_{2 n}, \ldots, b_{5 n}\) - Damping coefficients for negative relative velocities

Both polynomial parameterizations use a fifth-order polynomial expression. To use a lower-order polynomial, set the unneeded higher-order coefficients to zero. To use a higher-order polynomial, fit to a lower-order polynomial or use the table lookup parameterization.

The table lookup parameterization defines damping torque based on a set of torque and angular velocity vectors. If not specified, the block automatically adds a data point at the origin (zero angular velocity and zero torque).

\section*{Assumptions and Limitations}

The block assumes viscous damping. The damping force depends only on velocity.

\section*{Ports}

\section*{C}

Rotational conserving port.
R
Rotational conserving port.

\section*{Parameters}

\section*{Parameterization}

Select damping parameterization. Options are By polynomial and By table lookup.

\section*{By polynomial}

\section*{Symmetry}

Choose between symmetric and two-sided polynomial parameterizations.
- Symmetric - Specify a single set of polynomial coefficients governing damping for both positive and negative relative velocities.

\section*{Vector of damping coefficients}

Enter five-element vector with polynomial damping coefficients. Physical units are for the first coefficient.

The default vector is [1e-4 0 1e-5 0 1e-6]. The default unit is \(N * m /\) (rad/s).
- Two-sided - Specify two sets of polynomial coefficients governing damping, one for positive relative velocities, the other for negative relative velocities.

\section*{Vector of positive rotation damping coefficients}

Enter five-element vector with polynomial damping coefficients for positive relative velocities. Physical units are for the first coefficient.

The default vector is [1e-4 0 1e-5 0 1e-6]. The default unit is \(N * m /\) (rad/s).

\section*{Vector of negative rotation damping coefficients}

Enter five-element vector with polynomial damping coefficients for negative relative velocities. Physical units are for the first coefficient.

The default vector is [0.001-1e-5 1e-4 0 0].

\section*{By table lookup}

\section*{Angular velocity vector}

Enter vector with relative velocity values. The vector requires a minimum number of elements, based on the selected interpolation method - two for Linear, and three for Smooth. The number of elements must match the torque vector.

The default vector is \(\left[\begin{array}{llllllll}-1 & -0.5 & -0.3 & -0.1 & 0.1 & 0.3 & 0.5 & 1\end{array}\right]\). The default unit is rad/s.

\section*{Torque vector}

Enter vector with damping torque values corresponding to velocity vector. The vector requires a minimum number of elements, based on the selected
interpolation method - two for Linear, three for Smooth. The number of elements must match the velocity vector.

The default vector is \([-0.001 \quad-4 e-4-2 e-4-5 e-5 \quad 5 e-5 \quad 2 e-4 \quad 4 e-4\) \(0.001]\). The unit is \(N * m\).

\section*{Interpolation Method}

Select method used to find velocity-torque values between specified data points.
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Extrapolation Method}

Select method used to calculate values outside the table lookup data range.
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Nonlinear Rotational Damper | Nonlinear Translational Damper | Rotational Damper | Translational Damper | Variable Translational Damper
}

\section*{Introduced in R2013a}

\section*{Nonlinear Rotational Spring}

Torsional spring based on polynomial or table lookup parameterizations


\section*{Library}

Simscape / Driveline / Couplings \& Drives / Springs \& Dampers

\section*{Description}

The block represents a torsional spring with nonlinear torque-displacement curve. The spring torque magnitude is a general function of displacement. It need not satisfy Hooke's law. Polynomial and table lookup parameterizations provide two ways to specify the torque-displacement relationship. The spring torque can be symmetric or asymmetric with respect to zero deformation.

The symmetric polynomial parameterization defines spring torque according to the expression:
\[
T=k_{1} \theta+\operatorname{sign}(\theta) \cdot k_{2} \theta^{2}+k_{3} \theta^{3}+\operatorname{sign}(\theta) \cdot k_{4} \theta^{4}+k_{5} \theta^{5}
\]
where:
- \(T\) - Spring force
- \(k_{1}, k_{2}, \ldots, k_{5}-\) Spring coefficients
- \(\theta\) - Relative displacement between ports R and \(\mathrm{C}, \theta=\theta_{\text {init }}+\theta_{R}-\theta_{C}\)
- \(\theta_{\text {init }}\) - Initial spring deformation
- \(\theta_{\mathrm{R}}-\) Absolute angular position of port R
- \(\theta_{\mathrm{C}}-\) Absolute angular position of port C

At simulation start \((\mathrm{t}=0), \theta_{\mathrm{R}}\) and \(\theta_{\mathrm{C}}\) are zero, making \(\theta\) equal to \(\theta_{\text {init }}\).

To avoid zero-crossings that slow simulation, eliminate the sign function from the polynomial expression by specifying an odd polynomial ( \(b_{2}, b_{4}=0\) ).

The two-sided polynomial parameterization defines spring torque according to the expression:
\[
T=\left\{\begin{array}{c}
k_{1 t} \theta+k_{2 t} \theta^{2}+k_{3 t} \theta^{3}+k_{4 t} \theta^{4}+k_{5 t} \theta^{5}, \quad \theta \geq 0 \\
k_{1 c} \theta-k_{2 c} \theta^{2}+k_{3 c} \theta^{3}-k_{4 c} \theta^{4}+k_{5 c} \theta^{5}, \theta<0
\end{array},\right.
\]
where:
- \(k_{1 t}, k_{2 t}, \ldots, k_{5 t}-\) Spring tension coefficients
- \(k_{1 c}, k_{2 \mathrm{c}}, \ldots, k_{5 \mathrm{c}}-\) Spring compression coefficients

Both polynomial parameterizations use a fifth-order polynomial expression. To use a lower-order polynomial, set the unneeded higher-order coefficients to zero. To use a higher-order polynomial, fit to a lower-order polynomial or use the table lookup parameterization.

The table lookup parameterization defines spring torque based on a set of torque and angular velocity vectors. If not specified, the block automatically adds a data point at the origin (zero angular velocity and zero torque).

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

\section*{C}

Rotational conserving port

\section*{R}

Rotational conserving port

\section*{Parameters}

\section*{Parameterization}

Select spring parameterization. Options are By polynomial and By table lookup.

\section*{By Polynomial}

Specify nonlinear spring function in terms of polynomial coefficients.

\section*{Symmetry}

Choose between symmetric and two-sided polynomial parameterizations.
- Symmetric - Specify one set of polynomial coefficients governing spring torque in both tension and compression.

\section*{Vector of spring coefficients}

Enter five-element vector with polynomial spring coefficients. The highest non-zero order must be positive. Physical units are for the first coefficient.

The default vector is \(\left[\begin{array}{lllll}1 & 0 & 0.1 & 0 & 0.01\end{array}\right]\). The default unit is \(\mathrm{N} * \mathrm{~m} / \mathrm{rad}\).
- Two-sided - Specify two sets of polynomial coefficients governing spring torque, one for positive deformation, the other for negative deformation.

\section*{Vector of spring tension coefficients}

Enter a five-element vector containing the coefficients of the polynomial spring tension function. The highest order non-zero coefficient must be positive. The specified physical unit is the unit of the first polynomial coefficient.

\section*{Vector of spring compression coefficients}

Enter a five-element vector containing the coefficients of the polynomial spring compression function. The highest order non-zero coefficient must be positive. The specified physical unit is the unit of the first polynomial coefficient.

\section*{By table lookup}

\section*{Deformation vector}

Enter a vector containing the deformation values used in the table lookup. The vector must contain a minimum number of elements based on the interpolation method: two for Linear, and three for Smooth. The vector must also contain the same number of elements as the torque vector.

\section*{Torque vector}

Enter a vector containing the torque values that correspond to the deformation vector values. The vector must contain a minimum number of elements based on the interpolation method: two for Linear, and three for Smooth. The vector must also contain the same number of elements as the deformation vector. If not included in the vectors, the block automatically adds a point at the \((0,0)\) deformation-torque coordinate.

\section*{Interpolation method}

Select method used to calculate deformation-torque values between table lookup data points.
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Extrapolation method}

Select method used to calculate deformation-torque values outside the table lookup data range.
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\section*{See Also}

Nonlinear Translational Spring | Variable Rotational Spring | Variable Translational Spring

Introduced in R2013a

\section*{Nonlinear Translational Damper}

Translational damper based on polynomial or table lookup parameterizations


\section*{Library}

Simscape / Driveline / Couplings \& Drives / Springs \& Dampers

\section*{Description}

The block represents a nonlinear translational damper. Polynomial and table lookup parameterizations define the nonlinear relationship between damping force and relative linear velocity. The damping force can be symmetric or asymmetric about the zero velocity point. The block applies equal and opposite damping forces on the two translational conserving ports.

The symmetric polynomial parameterization defines the damping force for both positive and negative relative velocities according to the expression:
\[
F=b_{1} v+\operatorname{sign}(v) \cdot b_{2} v^{2}+b_{3} v^{3}+\operatorname{sign}(v) \cdot b_{4} v^{4}+b_{5} v^{5}
\]
where:
- F-Damping force
- \(b_{1}, b_{2}, \ldots, b_{5}\) - Damping coefficients
- \(v\) - Relative linear velocity between ports R and \(\mathrm{C}, v=v_{R}-v_{C}\)
- \(v_{\mathrm{R}}\) - Absolute linear velocity associated with port R
- \(v_{\mathrm{C}}-\) Absolute linear velocity associated with port C

To avoid zero-crossings that slow simulation, eliminate the sign function from the polynomial expression by specifying an odd polynomial ( \(b_{2}, b_{4}=0\) ).

The two-sided polynomial parameterization defines the damping force for both positive and negative relative velocities according to the expression:
\[
F=\left\{\begin{array}{l}
b_{1 e} v+b_{2 e} v^{2}+b_{3 e} v^{3}+b_{4 e} v^{4}+b_{5 e} v^{5}, v \geq 0 \\
b_{1 c} v-b_{2 c} v^{2}+b_{3 c} v^{3}-b_{4 c} v^{4}+b_{5 c} v^{5}, v<0^{\prime}
\end{array}\right.
\]
where:
- \(b_{1 \mathrm{e}}, b_{2 \mathrm{e}}, \ldots, b_{5 \mathrm{e}}\) - Damping coefficients for positive relative velocities
- \(b_{1 \mathrm{c}}, b_{2 \mathrm{c}}, \ldots, b_{5 \mathrm{c}}\) - Damping coefficients for negative relative velocities

Positive relative velocities correspond to damper extension (ports R and C moving away from each other). Negative relative velocities correspond to damper contraction (ports R and C moving towards each other).

Both polynomial parameterizations use a fifth-order polynomial expression. To use a lower-order polynomial, set the unneeded higher-order coefficients to zero. For polynomials of order greater than five, fit to a polynomial of order smaller than or equal to five, or use the table lookup parameterization.

The table lookup parameterization defines damping force based on a set of velocity and force vectors. If not included in the vectors, the block automatically adds a data point at the origin (zero velocity and zero force).

\section*{Assumptions and Limitations}

The block assumes viscous damping. The damping force depends only on velocity.

\section*{Ports}

C
Rotational conserving port
R
Rotational conserving port

\section*{Parameters}

\section*{Parameterization}

Select damping parameterization. Options are By polynomial and By table lookup.

\section*{By polynomial}

Specify coefficients of polynomial damping function.

\section*{Symmetry}

Choose between symmetric and two-sided polynomial parameterizations.
- Symmetric - Specify a single set of polynomial coefficients governing damping for both positive and negative relative velocities.

\section*{Vector of damping coefficients}

Enter five-element vector with polynomial damping coefficients. Physical units are for the first coefficient.

The default vector is [10 00100.1 . The default unit is \(\mathrm{N} /(\mathrm{m} / \mathrm{s})\).
- Two-sided - Specify two sets of polynomial coefficients governing damping, one for positive relative velocities, the other for negative relative velocities.

\section*{Vector of extension damping coefficients}

Enter five-element vector with polynomial damping coefficients for positive relative velocities. Physical units are for the first coefficient.

The default vector is \(\left[\begin{array}{lllll}10 & 0 & 1 & 0 & 0.1\end{array}\right]\). The default unit is \(N /(m / s)\).
Vector of contraction damping coefficients
Enter five-element vector with polynomial damping coefficients for negative relative velocities. Physical units are for the first coefficient.

The default vector is \(\left[\begin{array}{lllll}10 & 0 & 1 & 0 & 0.1\end{array}\right]\). The default unit is \(N /(m / s)\).

\section*{By table lookup}

\section*{Velocity vector}

Enter vector with relative velocity values. The vector requires a minimum number of elements, based on the selected interpolation method - two for Linear, and three for Smooth. The number of elements must match the force vector.

The default vector is \(\left[\begin{array}{lllllll}-1 & -0.5 & -0.3 & -0.1 & 0.1 & 0.3 & 0.5\end{array}\right]\). The default unit is \(\mathrm{m} / \mathrm{s}\).

\section*{Force vector}

Enter vector with damping force values corresponding to velocity vector. The vector requires a minimum number of elements, based on the selected interpolation method - two for Linear, three for Smooth. The number of elements must match the velocity vector.

The default vector is \(\left[\begin{array}{llllllll}-100 & -40 & -20 & -5 & 5 & 20 & 40 & 100\end{array}\right]\). The default unit is \(N\).

\section*{Interpolation Method}

Select method used to find intermediate velocity-force values between table lookup data points.
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Extrapolation Method}

Select method used to calculate values outside the table lookup data range.
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Nonlinear Rotational Damper | Rotational Damper | Translational Damper | Variable Rotational Damper | Variable Translational Damper

Introduced in R2013a

\section*{Nonlinear Translational Spring}

Translational spring based on polynomial or table lookup parameterizations


\section*{Library}

Simscape / Driveline / Couplings \& Drives / Springs \& Dampers

\section*{Description}

The block represents a translational spring with nonlinear force-displacement curve. The spring force magnitude is a general function of displacement. It need not satisfy Hooke's law. Polynomial and table lookup parameterizations provide two ways to specify the forcedisplacement relationship. The spring force can be symmetric or asymmetric with respect to zero deformation.

The symmetric polynomial parameterization defines spring force according to the expression
\[
F=k_{1} x+\operatorname{sign}(x) \cdot k_{2} x^{2}+k_{3} x^{3}+\operatorname{sign}(x) \cdot k_{4} x^{4}+k_{5} x^{5}
\]
where:
- F-Spring force
- \(k_{1}, k_{2}, \ldots, k_{5}\) - Spring coefficients
- \(x\) - Relative displacement between ports R and \(\mathrm{C}, x=x_{\text {init }}+x_{R}-x_{C}\)
- \(x_{\text {init }}\) - Initial relative displacement
- \(x_{\mathrm{R}}\) - Absolute displacement associated with port R
- \(x_{C}-\) Absolute displacement associated with port C

At simulation start \((\mathrm{t}=0), x_{\mathrm{R}}\) and \(x_{\mathrm{C}}\) are zero, making \(x\) equal to \(x_{\text {init }}\).

To avoid zero-crossings that slow simulation, eliminate the sign function from the polynomial expression by specifying an odd polynomial ( \(b_{2}, b_{4}=0\) ).

The asymmetric polynomial parameterization defines spring force according to the expression:
\[
F=\left\{\begin{array}{ll}
k_{1 t} x+k_{2 t} x^{2}+k_{3 t} x^{3}+k_{4 t} x^{4}+k_{5 t} x^{5}, & x \geq 0 \\
k_{1 c} x+k_{2 c} x^{2}+k_{3 c} x^{3}+k_{4 c} x^{4}+k_{5 c} x^{5}, x<0
\end{array},\right.
\]
where:
- \(k_{1}, k_{2}, \ldots, k_{5}\) - Spring tension coefficients
- \(k_{1}, k_{2}, \ldots, k_{5}\) - Spring compression coefficients

Both polynomial parameterizations use a fifth-order polynomial expression. To use a lower-order polynomial, set the unneeded higher-order coefficients to zero. To use a higher-order polynomial, fit to a lower-order polynomial or use the table lookup parameterization.

The table lookup parameterization defines damping torque based on a set of torque and angular velocity vectors. If not specified, the block automatically adds a data point at the origin (zero angular velocity and zero torque).

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

\section*{C}

Rotational conserving port

\section*{R}

Rotational conserving port

\section*{Parameters}

\section*{Parameterization}

Select spring parameterization. Options are By polynomial and By table lookup.

\section*{By polynomial}

Specify coefficients of polynomial spring function.

\section*{Symmetry}

Choose between symmetric and two-sided polynomial parameterizations.
- Symmetric - Specify one set of polynomial coefficients governing spring force in both tension and compression.

\section*{Vector of spring coefficients}

Enter five-element vector with polynomial spring coefficients. The highest non-zero order must be positive. Physical units are for the first coefficient.

The default vector is [100 0101001\(]\). The default unit is \(\mathrm{N} / \mathrm{m}\).
- Two-sided - Specify two sets of polynomial coefficients governing spring force, one for positive relative displacements, the other for negative relative displacements.

\section*{Vector of spring tension coefficients}

Enter five-element vector with polynomial spring tension coefficients. Physical units are for the first coefficient.

The default vector is [100 010011\(]\). The default unit is \(\mathrm{N} / \mathrm{m}\).

\section*{Vector of spring compression coefficients}

Enter five-element vector with polynomial spring compression coefficients. Physical units are for the first coefficient.

The default vector is [1000-10 10000 ]. The default unit is \(\mathrm{N} / \mathrm{m}\).

\section*{By table lookup}

\section*{Deformation vector}

Enter vector with relative displacement values. the vector requires a minimum number of elements, based on the selected interpolation method - two for Linear, and three for Smooth. The number of elements must match the force vector. If not included in the vector, the block automatically adds a point at the origin, corresponding to zero displacement and zero force. If the vector includes a zero value, then the force vector must contain a corresponding zero value.

\section*{Force vector}

Enter a vector containing the force values that correspond to the deformation vector values. The vector must contain a minimum number of elements based on the interpolation method: two for Linear, and three for Smooth. The vector must also contain the same number of elements as the deformation vector. If not included in the vectors, the block automatically adds a point at the \((0,0)\) deformation-force coordinate.

\section*{Interpolation Method}

Select method used to find intermediate velocity-force values between table lookup data points.
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Extrapolation Method}

Select method used to calculate values outside the table lookup data range.
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Nonlinear Rotational Spring | Variable Rotational Spring | Variable Translational Spring \\ Introduced in R2013a
}

\section*{Piston}

Piston mechanism of reciprocating combustion engine


\section*{Library}

Simscape / Driveline / Engines

\section*{Description}

The Piston block represents the piston mechanism of a reciprocating combustion engine. The piston model accounts for the instantaneous torque transmitted to the engine crankshaft. The instantaneous torque enables you to model vibrations in the drivetrain due to piston revolution. To model a multi-piston engine, use the Piston Engine block.

Port \(\mathbf{B}\) represents the translating piston and port \(\mathbf{F}\) the rotating crankshaft. The piston force follows from the cylinder pressure and cross-sectional area. The block obtains the combustion pressure from a lookup table parameterized in terms of the crank angle and, optionally, the crank angular velocity and engine throttle level.

The crank torque follows from the piston force and crank angle as well as the crank and connecting rod lengths. In terms of these inputs, the ratio of the piston force and crank torque is
\[
\frac{T_{\mathrm{F}}}{F_{\mathrm{B}}}=-\mathrm{c}\left(\sin (\theta)+\frac{\sin (2 \theta)}{2 \sqrt{\left(\frac{\mathrm{r}}{\mathrm{c}}\right)^{2}-\sin ^{2}(\theta)}}\right),
\]
where:
- \(F_{B}\) is the instantaneous piston force associated with the base port.
- \(T_{F}\) is the instantaneous crank torque associated with the follower port.
- \(c\) is the crank length.
- \(\theta\) is the instantaneous crank angle.
- \(r\) is the connecting rod length.


\section*{Piston Dimensions}

Physical signal port T lets you specify the engine throttle level as a fraction between 0 and 1. This fraction corresponds to the percentage of full power generated. The block uses the physical signal input whenever the pressure lookup table in the block dialog box is parameterized only in terms of the crank angle.

\section*{Ports}

B
Conserving rotational port representing the engine block.
F
Conserving rotational port representing the engine crankshaft.
T
Physical signal input port for specifying the engine throttle setting.

\section*{FC}

Physical signal input port for specifying fuel consumption rate. This port is hidden by default. Selecting one of these options for the Fuel consumption model parameter in the Fuel Consumption settings exposes this port:
- Constant per revolution
- Fuel consumption by speed and torque
- Brake specific fuel consumption by speed and torque
- Brake specific fuel consumption by speed and brake mean effective pressure

\section*{Parameters}

\section*{Cylinder bore}

Internal diameter of the engine cylinder that the piston travels in. The default value is 0.10 m .

\section*{Piston stroke}

Distance between the top dead center and bottom dead center piston positions. The default value is 0.06 m .

\section*{Piston rod length}

Length of the connecting rod located between the engine piston and the crankshaft. The default value is 0.10 m .

\section*{Number of strokes per cycle}

Number of strokes required to complete one engine cycle. One stroke corresponds to a full extension or retraction of the engine piston. A typical automobile engine is based on a four-stroke cycle with induction, compression, power, and exhaust stages. The default value is 4

\section*{Pressure parameterization}

Engine variables that the cylinder pressure depends on. Options include By crank angle, By crank angle and throttle, By crank angle, throttle, and crank velocity. The default setting is By crank angle.

\section*{Crank angle vector}
\(M\)-element vector of crank angles at which to specify the cylinder pressure. A zero angle corresponds to a piston at top dead center. The vector must range from \(-S^{*} 180\)
to \(+S^{*} 180\) degrees, where \(S\) is the number of strokes per cycle. The default vector is an eight-element vector ranging in value from -360 to +360 deg, corresponding to a four-stroke cycle.

\section*{Throttle vector}
\(N\)-element vector of engine throttle settings at which to specify the cylinder pressure. A value of 0 corresponds to no throttle and a value of 1 to full throttle. This parameter is active only when Pressure parameterization is set to By crank angle and throttle and By crank angle, throttle, and crank velocity. The default vector is [0.0, 0.3, 0.8, 1.0].

\section*{Crank velocity vector}
\(L\)-element vector of crankshaft angular velocities at which to specify the cylinder pressure. This parameter is active only when Pressure parameterization is set to By crank angle, throttle, and crank velocity. The default vector is [0.0, 1000.0, 6000.0] rpm.

\section*{Pressure vector}
\(M\)-element vector of cylinder pressures corresponding to the crank angles specified in the Crank angle vector parameter. This parameter is active only when Pressure parameterization is set to By crank angle.

\section*{Pressure matrix (gauge)}
\(M\)-by- \(N\) matrix of cylinder pressures corresponding to the crank angles and throttle settings specified in the Crank angle vector and Throttle vector parameters. This parameter is active only when Pressure parameterization is set to By crank angle and throttle. The default matrix is an \(8-b y-4\) matrix ranging in value from 0 to 50 bar.

\section*{Pressure matrix 3D (gauge)}
\(M\)-by- \(N\)-by- \(L\) matrix of cylinder pressures corresponding to the crank angles, throttle settings, and crank angular velocity values specified in the Crank angle vector, Throttle vector, and Crank velocity vector parameters. This parameter is active only when Pressure parameterization is set to By crank angle, throttle, and crank velocity. The default matrix is an 8 -by- 4 -by- 3 matrix ranging in value from 0 to 50 bar.

\section*{Main}

\section*{Bearing viscous friction coefficient}

Aggregate viscous friction coefficient of the main and rod bearings. The block uses this parameter to compute the viscous power losses between the base and follower shafts. The default value is \(0.001 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Offset angle}

Point in the engine cycle when the piston reaches top dead center. The engine cycle spans in angle from \(-S^{*} 180\) to \(+S^{*} 180\) degrees, where \(S\) is the number of strokes per cycle. The default value is 0 deg, corresponding to a zero offset.

\section*{Initial crank angle}

Crank angle at time zero relative to a top dead center position. The default value is 90 deg.

\section*{Fuel Consumption}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Fuel Consumption Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Fuel Consumption} \\
\hline \multicolumn{5}{|l|}{Fuel consumption model - Choose No fuel consumption, Constant per revolution, Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure} \\
\hline \multirow[t]{6}{*}{No fuel consumption} & Constant per revolution & \multirow[t]{2}{*}{Fuel consumption by speed and torque} & \multirow[t]{2}{*}{Brake specific fuel consumption by speed and torque} & \multirow[t]{2}{*}{Brake specific fuel consumption by speed and brake mean effective pressure} \\
\hline & \multirow[t]{5}{*}{Fuel consumption per revolution} & & & \\
\hline & & \multicolumn{3}{|l|}{Speed vector} \\
\hline & & \multicolumn{2}{|l|}{Torque vector} & Brake mean effective pressure vector \\
\hline & & Fuel consumption table & \multicolumn{2}{|l|}{Brake specific fuel consumption table} \\
\hline & & \multicolumn{3}{|l|}{Interpolation method - Choose Linear or Smooth} \\
\hline
\end{tabular}

\section*{Fuel consumption model}

Select a model for calculating engine-fuel consumption. Model parameterizations are compatible with standard industrial data. Choose between these options:
- No fuel consumption - The default option
- Constant per revolution
- Fuel consumption by speed and torque
- Brake specific fuel consumption by speed and torque
- Brake specific fuel consumption by speed and brake mean effective pressure

Selecting any option other than No fuel consumption exposes the FC port and related parameters. For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{No fuel consumption}

The block does not calculate fuel consumption. The FC port, which reports the fuel consumption rate, is not exposed. Selecting this option increases simulation speed.

\section*{Fuel consumption per revolution}

Enter the volume of fuel consumed in one crankshaft revolution. The default is \(25 \mathrm{mg} /\) rev.

Selecting Constant per revolution for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Speed vector}

Enter vector of engine speeds used in lookup table parameterizations. Vector size must match Torque vector size. The default is [1000, 2000, 3000, 4000, 5000, 6000] rpm. Selecting Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Torque vector}

Enter vector of engine torques used in the lookup table parameterizations. Vector size must match Speed vector size. The default is \([0,80,160,200,240,320\), 360, 400] \(N *\). Selecting Fuel consumption by speed and torque or Brake specific fuel consumption by speed and torque for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Fuel consumption table}

Enter matrix with fuel consumption rates corresponding to engine speed and torque vectors. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Torque vector. The default is \([.5, .9,1.4,1.6,1.9,2.7,3.4,4.4 ; 1,1.7\), \(2.7,3.1,3.6,5,6,7.4 ; 1.4,2.7,4,4.8,5.6,7.5,8.5,10.5 ;\) \(2,3.6,5.8,6.7,8,10.4,11.7,13.3 ; 2.5,4.8,7.9,9.4,10.8\), \(14,16.2,18.6 ; 3.1,6,10.3,11.9,13.8,18.4,22,26.5] \mathrm{g} / \mathrm{s}\).

Selecting Fuel consumption by speed and torque for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Brake mean effective pressure vector}

Enter vector of brake mean effective pressure (BMEP) values. The default is [0, 250, 500, 625, 750, 1000, 1150, 1250] kPa. The BMEP satisfies the expression:
\(B M E P=T \cdot\left(\frac{2 \pi \cdot n_{c}}{V_{d}}\right)\)
where:
- T-Output torque
- \(n_{c}\) - Number of cycles per revolution
- \(V_{d}\) - Cylinder displaced volume

Selecting Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Brake specific fuel consumption table}

Selecting Brake specific fuel consumption by speed and torque or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.
For the Brake specific fuel consumption by speed and torque fuel model, enter the matrix with brake specific fuel consumption (BSFC) rates corresponding to engine speed and torque vectors. BSFC is the ratio of the fuel consumption rate to the output power. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Torque vector.

For the Brake specific fuel consumption by speed and brake mean effective pressure fuel model, enter the matrix with brake specific fuel consumption (BSFC) rates corresponding to engine speed and brake mean effective pressure (BMEP) vectors. BSFC is the ratio of the fuel consumption rate to the output power. The number of rows must equal the number of elements in the Speed vector.

The number of columns must equal the number of elements in the Brake mean effective pressure vector.

For both fuel-consumption models, the default is [410, 380, 300, 280, 270, 290, 320, 380; 410, 370, 290, 270, 260, 270, 285, 320; 415, 380, 290, 275, 265, 270, 270, 300; 420, 390, 310, 290, 285, 280, 280, 285; 430, 410, 340, 320, 310, 300, 310, 320; 450, 430, 370, 340, 330, 330, 350, 380] g/hr/kW.

\section*{Interpolation method}

Select the interpolation method used to calculate fuel consumption at intermediate speed-torque values. Methods are Linear and Smooth. Outside the data range, fuel consumption is held constant at the last value given in the lookup table. Selecting Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Generic Engine | Piston Engine

\section*{Topics}
"Troubleshoot Engine Issues"

\section*{Introduced in R2016a}

\section*{Piston Engine}

Reciprocating combustion engine with variable number of pistons


\section*{Library}

Simscape / Driveline / Engines

\section*{Description}

The Piston Engine block represents a reciprocating combustion engine with multiple cylinders. The piston model accounts for the instantaneous torque transmitted to the engine drive shaft. The instantaneous torque enables you to model vibrations in the drivetrain due to piston revolution. To model just the piston mechanism of a combustion engine, use the Piston block.

Port \(\mathbf{B}\) represents the translating piston and port \(\mathbf{F}\) the rotating crankshaft. The piston force follows from the cylinder pressure and cross-sectional area. The block obtains the combustion pressure from a lookup table parameterized in terms of the crank angle and, optionally, the crank angular velocity and engine throttle level.

The crank torque follows from the piston force and crank angle as well as the crank and connecting rod lengths. In terms of these inputs, the ratio of the piston force and crank torque is
\[
\frac{T_{\mathrm{F}}}{F_{\mathrm{B}}}=-\mathrm{c}\left(\sin (\theta)+\frac{\sin (2 \theta)}{2 \sqrt{\left(\frac{\mathrm{r}}{\mathrm{c}}\right)^{2}-\sin ^{2}(\theta)}}\right),
\]
where:
- \(F_{B}\) is the instantaneous piston force associated with the base port.
- \(T_{F}\) is the instantaneous crank torque associated with the follower port.
- \(c\) is the crank length.
- \(\theta\) is the instantaneous crank angle.
- \(r\) is the connecting rod length.


\section*{Piston Dimensions}

Physical signal port T lets you specify the engine throttle level as a fraction between 0 and 1. This fraction corresponds to the percentage of full power generated. The block uses the physical signal input whenever the pressure lookup table in the block dialog box is parameterized only in terms of the crank angle.

\section*{Ports}

B
Conserving rotational port representing the engine block
F
Conserving rotational port representing the engine crankshaft
T
Physical signal input port for specifying the engine throttle setting

\section*{FC}

Physical signal input port for specifying fuel consumption rate. This port is hidden by default. Selecting one of these options for the Fuel consumption model parameter in the Fuel Consumption settings exposes this port:
- Constant per revolution
- Fuel consumption by speed and torque
- Brake specific fuel consumption by speed and torque
- Brake specific fuel consumption by speed and brake mean effective pressure

\section*{Parameters}

\section*{Pistons}

\section*{Number of pistons}

Number of pistons in the combustion engine. The default number is 4.

\section*{Offset angle vector}

Vector of piston offset angles. The offset angle specifies the point in the engine cycle when the piston reaches top dead center. The engine cycle spans in angle from \(-S^{* 180}\) to \(+S^{*} 180\) degrees, where \(S\) is the number of strokes per cycle.

The vector size must be the same as the number of pistons. The default vector is [0.0, 180.0, 360.0, -180.0], corresponding to a four-stroke, four-piston engine.

\section*{Cylinder bore}

Internal diameter of the engine cylinder that the piston travels in. The default value is 0.10 m .

\section*{Piston stroke}

Distance between the top dead center and bottom dead center piston positions. The default value is 0.06 m .

\section*{Piston rod length}

Length of the connecting rod located between the engine piston and the crankshaft. The default value is 0.10 m .

\section*{Number of strokes per cycle}

Number of strokes required to complete one engine cycle. One stroke corresponds to a full extension or retraction of the engine piston. A typical automobile engine is based on a four-stroke cycle with induction, compression, power, and exhaust stages. The default value is 4

\section*{Pressure parameterization}

Engine variables that the cylinder pressure depends on. Options include By crank angle, By crank angle and throttle, By crank angle, throttle, and crank velocity. The default setting is By crank angle.

\section*{Crank angle vector}
\(M\)-element vector of crank angles at which to specify the cylinder pressure. A zero angle corresponds to a piston at top dead center. The vector must range from \(-S^{*} 180\) to \(+S^{*} 180\) degrees, where \(S\) is the number of strokes per cycle. The default vector is an eight-element vector ranging in value from -360 to +360 deg, corresponding to a four-stroke cycle.

\section*{Throttle vector}
\(N\)-element vector of engine throttle settings at which to specify the cylinder pressure. A value of 0 corresponds to no throttle and a value of 1 to full throttle. This parameter is active only when Pressure parameterization is set to By crank angle and throttle and By crank angle, throttle, and crank velocity. The default vector is [0.0, 0.3, 0.8, 1.0].

\section*{Crank velocity vector}
\(L\)-element vector of crankshaft angular velocities at which to specify the cylinder pressure. This parameter is active only when Pressure parameterization is set to By crank angle, throttle, and crank velocity. The default vector is [0.0, 1000.0, 6000.0] rpm.

\section*{Pressure vector}
\(M\)-element vector of cylinder pressures corresponding to the crank angles specified in the Crank angle vector parameter. This parameter is active only when Pressure parameterization is set to By crank angle.

\section*{Pressure matrix (gauge)}
\(M\)-by- \(N\) matrix of cylinder pressures corresponding to the crank angles and throttle settings specified in the Crank angle vector and Throttle vector parameters. This parameter is active only when Pressure parameterization is set to By crank angle and throttle. The default matrix is an 8 -by- 4 matrix ranging in value from 0 to 50 bar.

\section*{Pressure matrix 3D (gauge)}
\(M\)-by- \(N\)-by- \(L\) matrix of cylinder pressures corresponding to the crank angles, throttle settings, and crank angular velocity values specified in the Crank angle vector, Throttle vector, and Crank velocity vector parameters. This parameter is active only when Pressure parameterization is set to By crank angle, throttle, and crank velocity. The default matrix is an 8 -by- 4 -by- 3 matrix ranging in value from 0 to 50 bar.

\section*{Crankshaft}

\section*{Shaft dynamics}

Optional shaft dynamics parameters. Options include No shaft dynamics Suitable for HIL simulation and Specify shaft stiffness, damping, and inertia

\section*{Stiffness}

Stiffness coefficient of the engine crankshaft. This parameter accounts for resistance to shaft deformation. This parameter is active only when the Shaft dynamics parameter is set to Specify shaft stiffness, damping, and inertia. The default value is \(1 \mathrm{e} 6 \mathrm{~N}^{*} \mathrm{~m} / \mathrm{rad}\).

\section*{Damping}

Damping coefficients of the engine crankshaft. This parameter accounts for energy dissipation due to shaft deformation. This parameter is active only when the Shaft dynamics parameter is set to Specify shaft stiffness, damping, and inertia. The default value is \(1000 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Inertia}

Moment of inertia of the crankshaft about its rotational axis. This parameter accounts for resistance to sudden changes in motion. This parameter is active only when the Shaft dynamics parameter is set to Specify shaft stiffness, damping, and inertia. The default value is \(0.02 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Initial angular deflection}

Deflection angle between the base and follower ends of the crankshaft at time zero. The deflection angle measures the angular deformation of the crankshaft due to torsion. This parameter is active only when the Shaft dynamics parameter is set to Specify shaft stiffness, damping, and inertia. The default value is 0 deg.

\section*{Initial angular velocity}

Angular velocity of the crankshaft at time zero. This parameter is active only when the Shaft dynamics parameter is set to Specify shaft stiffness, damping, and inertia. The default value is 0 rpm .

\section*{Base and follower bearing viscous friction coefficients}

Two-element vector with the viscous friction coefficients of the base and follower shaft bearings. The block uses viscous friction to account for energy losses between the base and follower shafts. The default vector is [0.0, 0.0] N*m/(rad/s), corresponding to zero damping.

\section*{Initial crank angle}

Crank angle at time zero relative to a top dead center position. The default value is 90 deg.

\section*{Fuel Consumption}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Fuel Consumption Parameter Dependencies}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Fuel Consumption} \\
\hline \multicolumn{5}{|l|}{Fuel consumption model - Choose No fuel consumption, Constant per revolution, Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure} \\
\hline \multirow[t]{6}{*}{No fuel consumption} & Constant per revolution & \multirow[t]{2}{*}{Fuel consumption by speed and torque} & \multirow[t]{2}{*}{Brake specific fuel consumption by speed and torque} & \multirow[t]{2}{*}{Brake specific fuel consumption by speed and brake mean effective pressure} \\
\hline & \multirow[t]{5}{*}{Fuel consumption per revolution} & & & \\
\hline & & \multicolumn{3}{|l|}{Speed vector} \\
\hline & & \multicolumn{2}{|l|}{Torque vector} & Brake mean effective pressure vector \\
\hline & & Fuel consumption table & \multicolumn{2}{|l|}{Brake specific fuel consumption table} \\
\hline & & \multicolumn{3}{|l|}{Interpolation method - Choose Linear or Smooth} \\
\hline
\end{tabular}

\section*{Fuel consumption model}

Select a model for calculating engine-fuel consumption. Model parameterizations are compatible with standard industrial data. Choose between these options:
- No fuel consumption - The default option
- Constant per revolution
- Fuel consumption by speed and torque
- Brake specific fuel consumption by speed and torque
- Brake specific fuel consumption by speed and brake mean effective pressure

Selecting any option other than No fuel consumption exposes the FC port and related parameters. For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{No fuel consumption}

The block does not calculate fuel consumption. The FC port, which reports the fuel consumption rate, is not exposed. Selecting this option increases simulation speed.

\section*{Fuel consumption per revolution}

Enter the volume of fuel consumed in one crankshaft revolution. The default is 25 mg / rev.

Selecting Constant per revolution for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Speed vector}

Enter vector of engine speeds used in lookup table parameterizations. Vector size must match Torque vector size. The default is [1000, 2000, 3000, 4000, 5000, 6000] rpm. Selecting Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Torque vector}

Enter vector of engine torques used in the lookup table parameterizations. Vector size must match Speed vector size. The default is \([0,80,160,200,240,320\), 360, 400] N*m. Selecting Fuel consumption by speed and torque or Brake specific fuel consumption by speed and torque for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Fuel consumption table}

Enter matrix with fuel consumption rates corresponding to engine speed and torque vectors. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Torque vector. The default is \([.5, .9,1.4,1.6,1.9,2.7,3.4,4.4 ; 1,1.7\), \(2.7,3.1,3.6,5,6,7.4 ; 1.4,2.7,4,4.8,5.6,7.5,8.5,10.5 ;\) \(2,3.6,5.8,6.7,8,10.4,11.7,13.3 ; 2.5,4.8,7.9,9.4,10.8\), \(14,16.2,18.6 ; 3.1,6,10.3,11.9,13.8,18.4,22,26.5] \mathrm{g} / \mathrm{s}\).

Selecting Fuel consumption by speed and torque for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Brake mean effective pressure vector}

Enter vector of brake mean effective pressure (BMEP) values. The default is [0, 250, 500, 625, 750, 1000, 1150, 1250] kPa. The BMEP satisfies the expression:
\(B M E P=T \cdot\left(\frac{2 \pi \cdot n_{c}}{V_{d}}\right)\)
where:
- T-Output torque
- \(n_{c}\) - Number of cycles per revolution
- \(V_{d}\) - Cylinder displaced volume

Selecting Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Brake specific fuel consumption table}

Selecting Brake specific fuel consumption by speed and torque or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.
For the Brake specific fuel consumption by speed and torque fuel model, enter the matrix with brake specific fuel consumption (BSFC) rates corresponding to engine speed and torque vectors. BSFC is the ratio of the fuel consumption rate to the output power. The number of rows must equal the number of elements in the Speed vector. The number of columns must equal the number of elements in the Torque vector.

For the Brake specific fuel consumption by speed and brake mean effective pressure fuel model, enter the matrix with brake specific fuel consumption (BSFC) rates corresponding to engine speed and brake mean effective pressure (BMEP) vectors. BSFC is the ratio of the fuel consumption rate to the output power. The number of rows must equal the number of elements in the Speed vector.

The number of columns must equal the number of elements in the Brake mean effective pressure vector.

For both fuel-consumption models, the default is [410, 380, 300, 280, 270, 290, 320, 380; 410, 370, 290, 270, 260, 270, 285, 320; 415, 380, 290, 275, 265, 270, 270, 300; 420, 390, 310, 290, 285, 280, 280, 285; 430, 410, 340, 320, 310, 300, 310, 320; 450, 430, 370, 340, 330, 330, 350, 380] g/hr/kW.

\section*{Interpolation method}

Select the interpolation method used to calculate fuel consumption at intermediate speed-torque values. Methods are Linear and Smooth. Outside the data range, fuel consumption is held constant at the last value given in the lookup table. Selecting Fuel consumption by speed and torque, Brake specific fuel consumption by speed and torque, or Brake specific fuel consumption by speed and brake mean effective pressure for the Fuel consumption model parameter exposes this parameter.

For more information, see the Fuel Consumption Parameter Dependencies table.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Generic Engine | Piston

\section*{Topics}
"Troubleshoot Engine Issues"

Introduced in R2016a

\section*{Planetary Gear}

Gear train with sun, planet, and ring gears


\section*{Library}

Simscape / Driveline / Gears

\section*{Description}

This block models a gear train with sun, planet, and ring gears. Planetary gears are common in transmission systems, where they provide high gear ratios in compact geometries. A carrier connected to a drive shaft holds the planet gears. Ports C, R, and S represent the shafts connected to the planet gear carrier, ring gear, and sun gear.


The block models the planetary gear as a structural component based on Sun-Planet and Ring-Planet Simscape Driveline blocks. The figure shows the block diagram of this structural component.


To increase the fidelity of the gear model, you can specify properties such as gear inertia, meshing losses, and viscous losses. By default, gear inertia and viscous losses are assumed negligible. The block enables you to specify the inertias of the internal planet gears only. To model the inertias of the carrier, sun, and ring gears, connect Simscape Inertia blocks to ports \(\mathrm{C}, \mathrm{S}\), and R .

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Planetary Gear Model}

\section*{Ideal Gear Constraints and Gear Ratios}

Planetary Gear imposes two kinematic and two geometric constraints on the three connected axes and the fourth, internal gear (planet):
\begin{tabular}{lllllllll}
\(r_{\mathrm{C}} \omega_{\mathrm{C}}\) & \(=\) & \(r_{\mathrm{S}} \omega_{\mathrm{S}}+\) & \(r_{\mathrm{P}} \omega_{\mathrm{P}}\) &, & \(r_{\mathrm{C}}\) & \(=\) & \(r_{\mathrm{S}}\) & + \\
\(r_{\mathrm{R}} \omega_{\mathrm{R}}\) & \(=\) & \(r_{\mathrm{C}} \omega_{\mathrm{C}}+\) & \(r_{\mathrm{P}} \omega_{\mathrm{P}}\) &, & \(r_{\mathrm{R}}\) & \(=\) & \(r_{\mathrm{C}}\) & + \\
\(r_{\mathrm{P}}\)
\end{tabular}.

The ring-sun gear ratio \(g_{\mathrm{RS}}=r_{\mathrm{R}} / r_{\mathrm{S}}=N_{\mathrm{R}} / N_{\mathrm{S}} . N\) is the number of teeth on each gear. In terms of this ratio, the key kinematic constraint is:
\(\left(1+g_{\mathrm{RS}}\right) \omega_{\mathrm{C}} \quad=\quad \omega_{\mathrm{S}}+\quad+\quad g_{\mathrm{RS}} \omega_{\mathrm{R}}\)

The four degrees of freedom reduce to two independent degrees of freedom. The gear pairs are \((1,2)=(S, P)\) and \((P, R)\).

Warning The gear ratio \(g_{\text {RS }}\) must be strictly greater than one.

The torque transfer is:
\begin{tabular}{llllll}
\(g_{\mathrm{RS}} \tau_{\mathrm{S}}\) & + & \(\tau_{\mathrm{R}}\) & - & \(\tau_{\text {loss }}\) & \(=\)
\end{tabular}
with \(\tau_{\text {loss }}=0\) in the ideal case .

\section*{Nonideal Gear Constraints and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). See "Model Gears with Losses".

\section*{Limitations}
- Gears are assumed rigid.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & Rotational conserving port that represents the planet gear carrier \\
\hline R & Rotational conserving port that represents the ring gear \\
\hline S & Rotational conserving port that represents the sun gear \\
\hline H & Thermal conserving port for thermal modeling \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Ring ( R ) to sun ( S ) teeth ratio (NR/NS)}

Ratio \(g_{\text {RS }}\) of the ring gear wheel radius to the sun gear wheel radius. This gear ratio must be strictly greater than 1 . The default is 2 .

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

\section*{Sun-planet and ring-planet ordinary efficiencies}

Vector of torque transfer efficiencies [ \(\eta_{\mathrm{SP}} \eta_{\mathrm{RP}}\) ] for sun-planet and ring-planet gear wheel pair meshings, respectively.

\section*{Sun-carrier and planet-carrier power thresholds}

Vector of power thresholds \(p_{\text {th }}\) above which full efficiency loss is applied, for sun-carrier and planet-carrier, respectively.

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as each efficiency array. The default array is [280 300 320] K.

\section*{Sun-planet efficiency}

Array of mechanical efficiencies with power flowing from the sun gear to the planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Ring-planet efficiency}

Array of mechanical efficiencies with power flowing from the ring gear to the planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is \(\left[\begin{array}{llll}0.95 & 0.9 & 0.85\end{array}\right]\).

\section*{Sun-carrier and planet-carrier velocity thresholds}

Array of power thresholds above which the full efficiency factors apply. Enter the thresholds for the sun and planet gears relative to the gear carrier, in this order. A hyperbolic tangent function smooths the efficiency factors between zero at rest and the values provided by the temperature-efficiency lookup tables at the power thresholds. The default array is [0.001 0.001] W.

\section*{Viscous Losses}

\section*{Sun-carrier and planet-carrier viscous friction coefficients}

Vector of viscous friction coefficients [ \(\mu_{\mathrm{S}} \mu_{\mathrm{P}}\) ] for the sun-carrier and planet-carrier gear motions, respectively. The default is [00].

From the drop-down list, choose units. The default is newton-meters/(radians/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Inertia}

\section*{Planet gear inertia}

Moment of inertia of the combined planet gears. This value must be positive or zero. Enter 0 to ignore gear inertia. The default value is \(0 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\section*{See Also}

\author{
Simscape Blocks \\ Compound Planetary Gear | Double-Pinion Planetary Gear | Ravigneaux Gear
}

\section*{Topics}
"Basic Motion, Torque, and Force Modeling"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
Introduced in R2011a

\section*{Planet-Planet}

Planetary gear set of carrier, inner planet, and outer planet wheels with adjustable gear ratio and friction losses


\section*{Library}

Simscape / Driveline / Gears / Planetary Subcomponents

\section*{Description}

The Planet-Planet gear block represents a set of carrier, inner planet, and outer planet gear wheels. Both planetary gears are connected to and rotate with respect to the carrier. The planets corotate with a fixed gear ratio that you specify. For model details, see "Planet-Planet Gear Model" on page 1-422.


\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal
port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Planet-Planet Gear Model}

\section*{Ideal Gear Constraints and Gear Ratios}

Planet-Planet imposes one kinematic and one geometric constraint on the three connected axes:
\(r_{\mathrm{C}} \omega_{\mathrm{C}}=r_{\mathrm{Po}} \omega_{\mathrm{Po}}+r_{\mathrm{Pi}} \omega_{\mathrm{Pi}} \quad, \quad r_{\mathrm{C}} \quad=\quad r_{\mathrm{Po}}+\quad r_{\mathrm{Pi}}\)
The outer planet-to-inner planet gear ratio \(g_{\mathrm{oi}}=r_{\mathrm{Po}} / r_{\mathrm{Pi}}=N_{\mathrm{Po}} / N_{\mathrm{Pi}} . N\) is the number of teeth on each gear. In terms of this ratio, the key kinematic constraint is:
\(\left.+\quad g_{0 i}\right) \omega_{\mathrm{C}} \quad=\)
\(\omega_{\mathrm{Pi}} \quad+\)
\(g_{\mathrm{oi}} \omega_{\text {Po }}\)

The three degrees of freedom reduce to two independent degrees of freedom. The gear pair is \((1,2)=(\mathrm{Pi}, \mathrm{Po})\).

The torque transfer is:
\(\begin{array}{lllllll}g_{\text {oi }} \tau_{\mathrm{Pi}} & + & \tau_{\mathrm{Po}} & - & \tau_{\text {loss }} & = & 0\end{array}\)
with \(\tau_{\text {loss }}=0\) in the ideal case .

\section*{Nonideal Gear Constraints and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). See "Model Gears with Losses".

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l} 
Rotational conserving port representing the \\
planet carrier
\end{tabular} \\
\hline Po & \begin{tabular}{l} 
Rotational conserving port representing the \\
outer planet gear
\end{tabular} \\
\hline Pi & \begin{tabular}{l} 
Rotational conserving port representing the \\
inner planet gear
\end{tabular} \\
\hline H & \begin{tabular}{l} 
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Outer planet (Po) to inner planet ( \(\mathbf{P i}\) ) teeth ratio ( \(\mathbf{N P o} / \mathbf{N P i}\) )}

Ratio \(g_{\text {oi }}\) of the outer planet gear radius wheel to the inner planet gear wheel radius. This gear ratio must be strictly positive. The default is 2 .

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

\section*{Ordinary efficiency}

Torque transfer efficiency \(\eta_{\mathrm{PP}}\) for planet-planet gear wheel pair meshing.

\section*{Inner planet-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the efficiency losses to zero when no power is transmitted. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Efficiency}

Array of component efficiencies used to construct a 1-D temperature-efficiency lookup table. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [ \(0.950 .9 \quad 0.85\) ].

\section*{Inner planet-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Inner planet-carrier viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{Pi}}\) for the inner planet-carrier gear motion. The default is 0.

From the drop-down list, choose units. The default is newton-meters/(radians/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\author{
Real-Time Simulation
}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model
parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

\section*{Simscape Blocks}

Planetary Gear | Ravigneaux Gear | Ring-Planet | Sun-Planet | Sun-Planet Bevel

\author{
Topics \\ "Basic Motion, Torque, and Force Modeling" \\ "Model Thermal Losses in Driveline Components" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
}

\section*{Introduced in R2011a}

\section*{Rack \& Pinion}

Rack and pinion gear coupling translational and rotational motion, with adjustable pinion radius and friction losses


\section*{Library}

\author{
Simscape / Driveline / Gears / Rotational-Translational
}

\section*{Description}

The Rack \& Pinion block represents rack and pinion gear that converts between translational and rotational motion. The rotational-translational gear constrains the pinion \((\mathrm{P})\) and rack ( R ) to, respectively, rotate and translate together in a fixed ratio that you specify. You can choose whether the rack axis translates in a positive or negative direction, as the pinion rotates in a positive direction, by using the Rack direction parameter.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Gear Model}

Model Variables
\begin{tabular}{|l|l|}
\hline\(R_{\mathrm{RP}}\) & Rack-pinion gear ratio \\
\hline\(\omega_{\mathrm{P}}\) & Angular velocity of the pinion shaft \\
\hline\(v_{\mathrm{R}}\) & Translational velocity of the rack \\
\hline\(r_{\mathrm{P}}\) & Effective radius of the pinion \\
\hline\(N_{\mathrm{P}}\) & Number of teeth on the pinion \\
\hline\(x_{\mathrm{R}}\) & Rack tooth spacing \\
\hline\(\tau_{\mathrm{P}}\) & Pinion shaft torque \\
\hline\(F_{\mathrm{R}}\) & Rack force \\
\hline\(F_{\text {loss }}\) & Total loss force \\
\hline\(F_{\text {Coul }}\) & Friction force \\
\hline\(\eta\) & Torque transfer efficiency \\
\hline\(p_{\mathrm{th}}\) & Power threshold \\
\hline\(\mu_{\mathrm{P}}\) & Viscous friction coefficient for the pinion shaft \\
\hline\(\mu_{\mathrm{R}}\) & Viscous friction coefficient for the rack motion \\
\hline
\end{tabular}

\section*{Ideal Gear Constraint and Gear Ratio}

Rack \& Pinion imposes one kinematic constraint on the two connected axes:
\(\omega_{\mathrm{P}}\)
\(=\)
\(R_{\mathrm{RP}} \nu_{\mathrm{R}}\)

The transmission ratio is:
\(R_{\mathrm{RP}}=1 / r_{\mathrm{P}}=\omega_{\mathrm{P}} / v_{\mathrm{N}}= \pm 2 \pi / N_{\mathrm{P}} v_{\mathrm{R}}\)
The two degrees of freedom are reduced to one independent degree of freedom. The forward-transfer gear pair convention is \((1,2)=(P, R)\).

The torque-force transfer is:
\(\begin{array}{llllll}R_{\mathrm{RP}} \tau_{\mathrm{P}} & + & F_{\mathrm{R}} & - & F_{\text {loss }} & =\end{array}\)
with \(F_{\text {loss }}=0\) in the ideal case .

\section*{Nonideal Gear Constraint}

In the nonideal case, \(F_{\text {loss }} \neq 0\). For general considerations on nonideal gear modeling, see "Model Gears with Losses".

In a nonideal pinion-rack pair ( \(\mathrm{P}, \mathrm{R}\) ), the angular velocity and geometric constraints are unchanged. But the transferred torque, force, and power are reduced by:
- Coulomb friction between teeth surfaces on P and R , characterized by constant efficiency \(\eta\)
- Viscous coupling of driveshafts with bearings, parametrized by viscous friction coefficients \(\mu\)

\section*{Meshing Efficiency}

The efficiency \(\eta\) of meshing between pinion and rack is fully active only if the transmitted power is greater than the power threshold.

If the power is less than the threshold, the actual efficiency is automatically regularized to unity at zero velocity.

Efficiency is assumed equal for both the forward and reverse power flow.

\section*{Viscous Friction Force}

The viscous friction coefficients \(\mu_{\mathrm{P}}\) and \(\mu_{\mathrm{R}}\) control the viscous friction torque and force experienced by the rack and pinion from lubricated, nonideal bearings. The viscous friction torque on the pinion axis is \(-\mu_{\mathrm{p}} \omega_{\mathrm{P}}\). The viscous friction force on the rack motion is \(-\mu_{\mathrm{R}} v_{\mathrm{R}}\).

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline P & \begin{tabular}{l} 
Rotational conserving port representing the \\
pinion
\end{tabular} \\
\hline R & \begin{tabular}{l} 
Translational conserving port representing \\
the rack
\end{tabular} \\
\hline H & \begin{tabular}{l} 
Thermal conserving port for modeling heat \\
transfer
\end{tabular} \\
\hline
\end{tabular}
\(P\) is a rotational conserving port. R is a translational conserving port. They represent the pinion and the rack, respectively.

\section*{Parameters}

\section*{Main}

\section*{Parameterize by}

Select how to parameterize the rack and pinion gear. The default is Pinion radius.
- Pinion radius - Gear ratio is defined by the effective radius of the pinion.

\section*{Pinion radius}

Effective radius of the pinion \(r_{\mathrm{P}}\). Must be greater than zero. The default is 100 .
From the drop-down list, choose units. The default is millimeters (mm).
- Tooth parameters - Gear ratio is defined by the number of teeth on the pinion gear and the rack tooth spacing. If you select this option, the panel changes from its default.

\section*{Tooth parameters}

\section*{Number of pinion teeth}

Number of teeth on the pinion \(N_{\mathrm{P}}\). Must be greater than zero. The default is 20.

\section*{Rack tooth spacing}

Spacing between the teeth on the rack \(\chi_{R}\). Must be greater than zero. The default is 5 .

From the drop-down list, choose units. The default is millimeters (mm).

\section*{Rack direction}

Choose whether the rack axis translates in a positive or negative direction when the pinion rotates in a positive direction. The default is Positive for positive pinion rotation.

\section*{Meshing Losses}

Parameters for meshing and friction losses vary with the block variant chosen—one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque and force between pinion and rack is reduced by constant efficiency \(0<\eta \leq 1\). If you select this option, the panel expands.

\section*{Constant Efficiency}

\section*{Efficiency}

Torque transfer efficiency \(\eta\) for the rack-pinion gear meshing, which is the same for the forward and reverse power flows. Must be greater than zero but less than, or equal to, one. The default is 0.8.

\section*{Rack power threshold}

Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the efficiency losses to zero when no power is transmitted. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Efficiency}

Array of component efficiencies used to construct a 1-D temperature-efficiency lookup table. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is \(\left[\begin{array}{lll}0.95 & 0.9 & 0.85\end{array}\right]\).

\section*{Rack power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Pinion rotational viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{P}}\) for the pinion shaft. The default is 0 .
From the drop-down list, choose units. The default is newton-meters/(radians/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Rack translational viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{R}}\) for the rack motion. The default is 0 .
From the drop-down list, choose units. The default is newton/(meters/second) (N/ (m/ s) ).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Simscape Blocks
Leadscrew | Simple Gear

\author{
Topics \\ "Basic Motion, Torque, and Force Modeling" \\ "Model Thermal Losses in Driveline Components" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
}

Introduced in R2011a

\section*{Ravigneaux Gear}

Planetary gear with two sun gears and two planet gear sets


\section*{Library}

Simscape / Driveline / Gears

\section*{Description}

This block represents a planetary gear train with dual sun and planet gear sets. The two sun gears are centrally located and separated longitudinally along a common rotation axis. The smaller of these gears engages an inner planet gear set, which in turn engages an outer planet gear set. The outer planet gear set, whose length spans the distance between the two sun gears, engages both the larger sun gear and the ring gear.

A carrier holds the planet gear sets in place at different radii. The carrier, which rigidly connects to a drive shaft, can spin as a unit with respect to the sun and ring gears. Revolute joints, each located between a planet gear and the carrier, enable the gears to spin about their individual longitudinal axes.

The relative angular velocities of the sun, planet, and ring gears follow from the kinematic constraints between them. For more information, see "Ravigneaux Gear Model" on page 1-437.


The block models the Ravigneaux gear as a structural component based on Sun-Planet, Planet-Planet, and Ring-Planet Simscape Driveline blocks. The figure shows the block diagram of this structural component.


To increase the fidelity of the gear model, you can specify properties such as gear inertia, meshing losses, and viscous losses. By default, gear inertia and viscous losses are assumed negligible. The block enables you to specify the inertias of the internal planet gears only. To model the inertias of the carrier, large sun, small sun, and ring gears, connect Simscape Inertia blocks to ports C, SL, SS, and R.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Ravigneaux Gear Model}

\section*{Ideal Gear Constraints and Gear Ratios}

Ravigneaux imposes four kinematic and four geometric constraints on the four connected axes and the two internal wheels (inner and outer planets):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(r_{\mathrm{Ci}} \omega_{\mathrm{C}}\) & \(=\) & \(r_{\text {Ss }} \omega_{\text {SS }}\) & + & \(r_{\text {Pi }} \omega_{\text {Pi }}\) & , & \(r_{\text {Ci }}\) & = & \(r_{\text {SS }}\) & + & & \(r_{\text {Pi }}\) \\
\hline \(r_{\text {Co }} \omega_{\text {C }}\) & \(=\) & \(r_{\text {SL }} \omega_{\text {SL }}\) & + & \(r_{\text {Po }} \omega_{\text {Po }}\) & , & \(r_{\text {Co }}\) & = & \(r_{\text {SL }}\) & + & & \(r_{\text {Po }}\) \\
\hline \(\left(r_{\text {Co }}\right.\) & & = & \(r_{\text {Pi }} \omega_{\text {Pi }}\) & \(+r_{\mathrm{P}}\) & & \(r_{\text {Co }}\) & - & \(r_{\text {Ci }}=\) & \(r_{\text {Po }}\) & + & \(r_{\text {Pi }}\) \\
\hline \(r_{\mathrm{R}} \omega_{\mathrm{R}}\) & \(=\) & \(r_{\text {Co }} \omega_{\text {C }}\) & + & \(r_{\text {Po }} \omega_{\text {Po }}\) & & \(r_{\text {R }}\) & = & \(r_{\text {Co }}\) & + & & \(r_{\text {Po }}\) \\
\hline
\end{tabular}

The ring-small sun ratio \(g_{\mathrm{RSS}}=r_{\mathrm{R}} / r_{\mathrm{SS}}=N_{\mathrm{R}} / N_{\mathrm{SS}}\) and ring-large sun gear ratio \(g_{\mathrm{RSL}}=r_{\mathrm{R}} / r_{\mathrm{SL}}\) \(=N_{\mathrm{R}} / N_{\mathrm{SL}} . N\) is the number of teeth on each gear. In terms of these ratios, the key kinematic constraints are:
\begin{tabular}{lllllll}
\(\left(g_{\mathrm{RSS}}\right.\) & - & \(1) \omega_{\mathrm{C}}\) & \(=\) & \(g_{\mathrm{RSS}} \omega_{\mathrm{R}}\) & - & \(\omega_{\mathrm{SS}}\) \\
\(\left(g_{\mathrm{RSL}}\right.\) & + & \(1) \omega_{\mathrm{C}}\) & \(=\) & \(g_{\mathrm{RSL}} \omega_{\mathrm{R}}\) & + & \(\omega_{\mathrm{SL}}\)
\end{tabular}

The six degrees of freedom reduce to two independent degrees of freedom. The gear pairs are \((1,2)=(\mathrm{LS}, \mathrm{P}),(\mathrm{SS}, \mathrm{P}),(\mathrm{P}, \mathrm{R})\), and \((\mathrm{P}, \mathrm{P})\).

Warning The gear ratio \(g_{\text {RSS }}\) must be strictly greater than the gear ratio \(g_{\text {RSL }}\). The gear ratio \(g_{\text {RSL }}\) must be strictly greater than one.

The torque transfers are:
\(g_{\mathrm{RSS}} \tau_{\mathrm{SS}}+\tau_{\mathrm{R}}-\tau_{\text {loss }}(\mathrm{SS}, \mathrm{R})=0, g_{\mathrm{RSL}} \tau_{\mathrm{SL}}+\tau_{\mathrm{R}}-\tau_{\text {loss }}(\mathrm{SL}, \mathrm{R})=0\)
with \(\tau_{\text {loss }}=0\) in the ideal case.

\section*{Nonideal Gear Constraints and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). See "Model Gears with Losses".

\section*{Limitations}
- Gears are assumed rigid.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l} 
Rotational conserving port representing the \\
planet gear carrier
\end{tabular} \\
\hline R & \begin{tabular}{l} 
Rotational conserving port representing the \\
ring gear
\end{tabular} \\
\hline SL & \begin{tabular}{l} 
Rotational conserving port representing the \\
large sun gear
\end{tabular} \\
\hline SS & \begin{tabular}{l} 
Rotational conserving port representing the \\
small sun gear
\end{tabular} \\
\hline H & \begin{tabular}{l} 
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Ring ( R ) to large sun (SL) teeth ratio (NR/NSL)}

Ratio \(g_{\text {RSL }}\) of the ring gear wheel radius to the large sun gear wheel radius. This gear ratio must be strictly greater than 1 . The default is 2 .

\section*{Ring (R) to small sun (SS) teeth ratio (NR/NSS)}

Ratio \(g_{\text {RSS }}\) of the ring gear wheel radius to the small sun gear wheel radius. This gear ratio must be strictly greater than the ring-large sun gear ratio. The default is 3 .

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

\section*{Large sun-planet, small sun-planet, ring-planet, and planet-planet ordinary efficiencies}

Vector of torque transfer efficiencies [ \(\eta_{\mathrm{LSP}} \eta_{\mathrm{SSP}} \eta_{\mathrm{RP}} \eta_{\mathrm{PP}}\) ] for large sun-planet, small sun-planet, ring-planet, and planet-planets gear wheel pair meshings, respectively.

\section*{Large sun-carrier, small sun-carrier, large sun planet-carrier, and small sun planet-carrier power thresholds}

Vector of power thresholds \(p_{\text {th }}\) above which full efficiency loss is applied, for large sun-carrier, small sun-carrier, large sun planet-carrier, and small sun planet-carrier velocities, respectively. The default is [0.001 0.001 0.001 \(0.001]\) W.

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as each efficiency array. The default array is [280 300 320] K.

\section*{Large sun-planet efficiency}

Array of mechanical efficiencies with power flowing from the large sun gear to the large sun planet gears. Each array value is the ratio of output power to input power at
one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Small sun-planet efficiency}

Array of mechanical efficiencies with power flowing from the small sun gear to the small sun planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Ring-planet efficiency}

Array of mechanical efficiencies with power flowing from the ring gear to the large sun planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Planet-planet efficiency}

Array of mechanical efficiencies with power flowing from the small sun planet gears to the large sun planet gears. Each array value is the ratio of output power to input power at one of the temperatures in the temperature array. The temperature and efficiency arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Large sun-carrier, small sun-carrier, large sun planet-carrier and small sun planet-carrier power thresholds}

Array of power thresholds above which the full efficiency factors apply. Enter the thresholds for the large sun gear, small sun gear, large sun planet gears, and small sun planet gears, all relative to the gear carrier, in this order. A hyperbolic tangent function smooths the efficiency factors between zero at rest and the values provided by the temperature-efficiency lookup tables at the power thresholds. The default array is [0.001 0.001 0.001 0.001] W.

\section*{Viscous Losses}

Large sun-carrier, small sun-carrier, large sun planet-carrier, and small sun planet-carrier viscous friction coefficients

Vector of viscous friction coefficients [ \(\mu_{\mathrm{LS}} \mu_{\mathrm{SS}} \mu_{\mathrm{LSP}} \mu_{\mathrm{SSP}}\) ] for the large sun-carrier, small sun-carrier, large sun planet-carrier, and small sun planet-carrier gear motions, respectively. The default is [0 000 ].

From the drop-down list, choose units. The default is newton-meters/(radians/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Inertia}

\section*{Inner planet gear inertia}

Moment of inertia of the planet gear carrier. This value must be positive or zero. Enter 0 to ignore carrier inertia. The default value is \(0 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Outer planet gear inertia}

Moment of inertia of the combined planet gears. This value must be positive or zero. Enter 0 to ignore gear inertia. The default value is \(0 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

\author{
Simscape Blocks \\ Compound Planetary Gear | Planet-Planet | Planetary Gear | Ring-Planet | Sun-Planet
}

\section*{Topics}
"Basic Motion, Torque, and Force Modeling"
"Ravigneaux Four-Speed Transmission"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
Introduced in R2011a

\section*{Ring-Planet}

Planetary gear set of carrier, planet, and ring wheels with adjustable gear ratio and friction losses


\section*{Library}

Simscape / Driveline / Gears / Planetary Subcomponents

\section*{Description}

The Ring-Planet gear block represents a set of carrier, planet, and ring gear wheels. The planet is connected to and rotates with respect to the carrier. The planet and ring corotate with a fixed gear ratio that you specify. A ring-planet and a sun-planet gear are basic elements of a planetary gear set. For model details, see "Ring-Planet Gear Model" on page 1-444.


\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape \(>\) Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Ring-Planet Gear Model}

\section*{Ideal Gear Constraints and Gear Ratios}

Ring-Planet imposes one kinematic and one geometric constraint on the three connected axes:
\(r_{\mathrm{R}} \omega_{\mathrm{R}}=r_{\mathrm{C}} \omega_{\mathrm{C}}+r_{\mathrm{P}} \omega_{\mathrm{P}}, \quad r_{\mathrm{R}}=r_{\mathrm{C}}+r_{\mathrm{P}}\).
The ring-planet gear ratio \(g_{\mathrm{RP}}=r_{\mathrm{R}} / r_{\mathrm{P}}=N_{\mathrm{R}} / N_{\mathrm{P}} . N\) is the number of teeth on each gear. In terms of this ratio, the key kinematic constraint is:
\begin{tabular}{llllll}
\(g_{\mathrm{RP}}\) & \(\omega_{\mathrm{R}}\) & \(=\) & \(\omega_{\mathrm{P}}\) & + & \(\left(g_{\mathrm{RP}}\right.\)
\end{tabular}

The three degrees of freedom reduce to two independent degrees of freedom. The gear pair is \((1,2)=(P, R)\).

Warning The ring-planet gear ratio \(g_{\mathrm{RP}}\) must be strictly greater than one.

The torque transfer is:
\begin{tabular}{lllllll}
\(g_{\mathrm{RP}} \tau_{\mathrm{P}}\) & + & \(\tau_{\mathrm{R}}\) & - & \(\tau_{\text {loss }}\) & \(=\) & 0
\end{tabular}
with \(\tau_{\text {loss }}=0\) in the ideal case.

\section*{Nonideal Gear Constraints and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). See "Model Gears with Losses".

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l} 
Rotational conserving port representing the \\
planet carrier
\end{tabular} \\
\hline P & \begin{tabular}{l} 
Rotational conserving port representing the \\
planet gear
\end{tabular} \\
\hline R & \begin{tabular}{l} 
Rotational conserving port representing the \\
ring gear
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline H & \begin{tabular}{l} 
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Ring (R) to planet (P) teeth ratio (NR/NP)}

Ratio \(g_{\mathrm{RP}}\) of the ring gear wheel radius to the planet gear wheel radius. This gear ratio must be strictly greater than 1 . The default value is 2 .

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

Ordinary efficiency
Torque transfer efficiency \(\eta_{\mathrm{RP}}\) for ring-planet gear wheel pair meshing.
Planet-carrier power threshold
Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the
efficiency losses to zero when no power is transmitted. The default value is 0.001 W.

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Efficiency}

Array of component efficiencies used to construct a 1-D temperature-efficiency lookup table. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Planet-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Planet-carrier viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{P}}\) for the planet-carrier gear motion. The default is 0 .
From the drop-down list, choose units. The default is newton-meters/(radians/second) \((N * m /(\mathrm{rad} / \mathrm{s}))\).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .
Real-Time Simulation
Hardware-in-the-Loop Simulation
For optimal simulation performance, use the Meshing Losses > Friction modelparameter default setting, No meshing losses - Suitable for HIL simulation.
Extended Capabilities
C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).
See Also
Simscape Blocks
Compound Planetary Gear | Planet-Planet | Planetary Gear | Sun-Planet | Sun-Planet Bevel
Topics"Basic Motion, Torque, and Force Modeling""Adjust Model Fidelity""Epicyclic Gear Efficiency Measurement"
"Model Thermal Losses in Driveline Components""Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
Introduced in R2011a

\section*{Road Profile}

Road profile with varying elevation and friction properties
Library: \(\quad\) Simscape / Driveline / Tires \& Vehicles

\section*{Description}

The Road Profile block represents a road profile with varying elevation and friction properties. As a vehicle travels, the axle parameters and the position of the center of gravity (CG) determine the position of the front and rear axles. The block uses the axle positions to compute vehicle angle and, optionally, tire friction coefficients. The block models friction using either Magic Formula or kinetic and static friction coefficients.

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

\section*{Conserving}

\author{
H - Horizontal motion \\ mechanical translational
}

Conserving port associated with the horizontal motion. Connect to the \(\mathbf{H}\) port of the Vehicle Body block.

\section*{Output}

\section*{MF - Front axle friction coefficients}

\section*{vector}

Physical signal output port for the friction coefficients of the front axle.
The vector contains four elements for the Magic Formula friction model or two elements for the friction coefficients friction model. Connect to the \(\mathbf{M}\) port of a front axle Tire (Friction Parameterized) or Tire (Magic Formula) block.

This port is visible only when the Friction output parameter is set to one of these values:

\section*{- Physical signal Magic Formula coefficients}
- Physical signal friction coefficients

\section*{MR - Rear axle friction coefficients}
vector
Physical signal output port for the friction coefficients of the rear axle.
The vector contains four elements for the Magic Formula friction model or two elements for the friction coefficients friction model. Connect to the \(\mathbf{M}\) port of a rear axle Tire (Friction Parameterized) or Tire (Magic Formula) block.

\section*{Dependencies}

This port is visible only when the Friction parameter Friction output is set to one of these values:
- Physical signal Magic Formula coefficients
- Physical signal friction coefficients

\section*{beta - Vehicle angle}
scalar
Physical signal output port for the vehicle angle.

\section*{Parameters}

\section*{Main}

Horizontal distance from CG to front axle - Distance between CG and front axle

\section*{1.4 m (default) | positive scalar}

Horizontal distance from the center of gravity (CG) to the front axle. Specify the same value as is specified for the Horizontal distance from CG to front axle parameter of the connected Vehicle Body block.
```

Horizontal distance from CG to rear axle - Distance between CG and rear axle

```

\section*{1.6 m (default) | positive scalar}

Horizontal distance from the center of gravity (CG) to the rear axle. Specify the same value as is specified for the Horizontal distance from CG to rear axle parameter of the connected Vehicle Body block.

\section*{Horizontal distance for vertical profile - Vertical profile horizontal distance}

\section*{[-10, 0, 10] m (default) | vector}

Table lookup corresponding to the distance that the CG of the vehicle moves relative to the reference frame \(x\)-axis. For example the figure shows a horizontal profile of \([-10,0\), 10]. Table lookup extrapolation is nearest.


\section*{Vertical profile - Vertical profile} [0, 0, .25] m (default) | vector

Table lookup corresponding to the distance that the CG of the vehicle moves relative to the reference frame \(y\)-axis. For example the figure shows a vertical profile of [2, 0, 5]. Table lookup extrapolation is nearest.


\section*{Friction}

\section*{Friction output - Friction coefficient output type}

None (default)|Physical signal Magic Formula coefficientsPhysical signal friction coefficients

Type of friction coefficient that the block outputs. Select Physical signal Magic Formula coefficients to vary friction for Tire (Magic Formula) blocks. Select Physical signal friction coefficients to vary friction for Tire (Friction Parameterized) blocks.

\section*{Dependencies}

Setting this parameter to Physical signal Magic Formula coefficients or Physical signal friction coefficients makes the MF and MR ports and associated Friction parameters visible.
```

Horizontal distance for friction profile - Horizontal distance for friction
profile
[-10, 2, 2.1, 6, 6.1, 10]m(default)|vector

```

Friction profile horizontal distance.

\section*{Dependencies}

This parameter is visible only when the Friction parameter Friction output is set to one of these values:
- Physical signal Magic Formula coefficients
- Physical signal friction coefficients

\section*{Magic Formula coefficients for front axle - Front axle Magic Formula coefficients}
\([10,2,1,1 ; 10,2,1,1 ; 8,3,1,1 ; 8,3,1,1 ; 9,4,1,1 ; 9,4\), 1, 1] (default) | matrix

Magic Formula coefficients specified as an \(n\)-by- 4 matrix, where \(n\) is the number of points in the vector specified by the Horizontal distance for friction profile parameter.

\section*{Dependencies}

This parameter is visible only when the Friction parameter Friction output is set to Physical signal Magic Formula coefficients.
```

Magic Formula coefficients for rear axle - Rear axle Magic Formula
coefficients
[10, 2, 1, 1; 10, 2, 1, 1; 8, 3, 1, 1; 8, 3, 1, 1; 9, 4, 1, 1; 9, 4,
1, 1] (default)| matrix

```

Magic Formula coefficients specified as an \(n\)-by- 4 matrix, where \(n\) is the number of points in the vector specified by the Horizontal distance for friction profile parameter.

\section*{Dependencies}

This parameter is visible only when the Friction parameter Friction output is set to Physical signal Magic Formula coefficients.

\section*{Static and kinetic friction coefficients for front axle - Front axle friction coefficients}
[.9, .7; .9, .7; .7, .5; .7, .5; .8, .6; .8, .6] (default)| matrix
Front axle static and kinetic friction coefficients specified as an \(n\)-by- 2 matrix, where \(n\) is the number of points in the vector specified by the Horizontal distance for friction profile parameter.

\section*{Dependencies}

This parameter is visible only when the Friction parameter Friction output is set to Physical signal friction coefficients.

\section*{Static and kinetic friction coefficients for rear axle - Rear axle friction coefficients \\ ```
[.9, .7; . 9, .7; .7, .5; .7, .5; .8, .6; .8, .6] (default)|matrix
```}

Rear axle static and kinetic friction coefficients specified as an \(n\)-by- 2 matrix, where \(n\) is the number of points in the vector specified by the Horizontal distance for friction profile parameter.

\section*{Dependencies}

This parameter is visible only when the Friction parameter Friction output is set to Physical signal friction coefficients.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Tire (Friction Parameterized) | Tire (Magic Formula) | Tire-Road Interaction (Magic Formula) | Vehicle Body \\ \section*{Topics} \\ "Model a Road Profile with Varying Elevation and Friction" \\ Introduced in R2019a
}

\section*{Rod}

Axially flexible bar or cable
Library: \(\quad\) Simscape / Driveline / Couplings \& Drives

\section*{Description}

The Rod block represents an axially flexible bar or cable in tension or compression.

\section*{Tension}

\section*{Compression}

\section*{Model}

To represent the bar or cable, the block uses a lumped parameter model. The model is composed of \(N+1\) lumped masses that are connected in series by \(N\) sets of parallelconnected spring and damper circuits. The spring represents elasticity. The damper represents material damping.

A single flexible element model exhibits an eigenfrequency that is close to the first eigenfrequency of the distributed parameter model. For more accurate analysis, select 2, 4,8 , or more flexible elements.

The equivalent physical network contains \(N\) spring and damper circuits and \(N+1\) mass blocks. The total mass of the rod is distributed evenly over the mass blocks. The stiffness of the spring in each spring and damper circuit is equal to the \(N\) times the stiffness of the rod material.

\section*{Equations}

The defining equations for the model are:
\[
\eta=2 \zeta \sqrt{\frac{K \cdot m}{2}}
\]
\[
\begin{aligned}
& A=\frac{\Pi\left(D^{2}-d^{2}\right)}{4} \\
& K=\frac{E \cdot A}{L} \\
& m=A \cdot L \cdot \rho
\end{aligned}
\]

Where:
- \(\quad \eta\) is the damping of the rod.
- \(\quad \varsigma\) is the damping ratio of the rod material.
- \(K\) is the stiffness of the rod.
- \(A\) is the cross-sectional area of the rod.
- \(D\) is the outer diameter of the rod.
- \(d\) is the inner diameter of the rod, where
- \(d=0\) for a solid rod.
- \(d>0\) for an annular, that is, hollow, rod.
- \(E\) is Young's modulus, that is, the modulus of elasticity, of the rod material.
- \(L\) is the length of the rod.
- \(m\) is the mass of the rod.
- \(\quad \rho\) is the density of the rod material.

\section*{Assumptions and Limitations}
- The rod does not buckle, in the case of a bar, or go slack, in the case of a cable, in tension.
- The rod has a constant cross-section along its length.
- The distributed parameter model is approximated as a finite number of flexible elements, \(N\).

\section*{Ports}

\section*{Conserving}

\section*{B - Base}
translational mechanical
Translational conserving port associated with rod base or input.

\section*{F - Follower}
translational mechanical
Translational conserving port associated with rod follower or output.

\section*{Parameters}

Rod
The table shows how the visibility of some Rod parameters depends on choices that you make for other Rod parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Rod Parameter Dependencies Table}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Rod} \\
\hline \multicolumn{2}{|l|}{Parameterization} \\
\hline By stiffness and inertia & By material and geometry \\
\hline Stiffness & Geometry \\
\hline \multirow[t]{6}{*}{Mass} & Solid Annular \\
\hline & Length \\
\hline & Outer diameter \\
\hline & Inner diameter \\
\hline & Density \\
\hline & Young's modulus \\
\hline \multicolumn{2}{|l|}{Damping ratio} \\
\hline \multicolumn{2}{|l|}{Number of flexible elements} \\
\hline
\end{tabular}

\section*{Parameterization - Parameterization method}

By stiffness and inertia (default)|By material and geometry
Parameterization method.
Each Parameterization option exposes other parameters. For more information, see Rod Parameter Dependencies Table.

\section*{Stiffness - Material stiffness}
\(5 e 8\) N/m (default) | non-negative scalar
Material stiffness.
Setting the Parameterization parameter to By stiffness and inertia exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Mass - Rod mass}

20 kg (default) | positive scalar
Rod mass.

\section*{Dependencies}

Setting the Parameterization parameter to By stiffness and inertia exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Geometry - Rod cross-section}

Solid (default)|Annular
Rod cross-sectional geometry.

\section*{Dependencies}

Setting the Parameterization parameter to By material and geometry exposes this parameter. Each Geometry option exposes other parameters. For more information, see Rod Parameter Dependencies Table.

\section*{Length - Rod length}

1 m (default) | positive scalar
Rod length.

\section*{Dependencies}

Setting the Parameterization parameter to By material and geometry exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Outer diameter - Rod outer diameter}
0.075 m (default) | positive scalar

Rod outer diameter.

\section*{Dependencies}

Setting the Parameterization parameter to By material and geometry exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Inner diameter - Rod inner diameter \\ 0.050 m (default) | positive scalar}

Rod inner diameter. If the rod is solid, specify 0 .

\section*{Dependencies}

Setting the Parameterization parameter to By material and geometry and the Geometry parameter to Annular exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Density - Material density}

\section*{\(7.8 \mathrm{e} 3 \mathrm{~kg} / \mathrm{m}^{\wedge} 3\) (default) | positive scalar}

Material density.

\section*{Dependencies}

Setting the Parameterization parameter to By material and geometry exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Young's modulus - Young's modulus}

200e9 Pa (default) | positive scalar
Young's modulus for the rod material.

\section*{Dependencies}

Setting the Parameterization parameter to By material and geometry exposes this parameter. For more information, see Rod Parameter Dependencies Table.

\section*{Damping ratio - Material damping ratio}
0.01 (default) | non-negative scalar

Material damping ratio.

\section*{Number of flexible elements \(\mathbf{- N}\) \\ 1 (default) | positive integer scalar}

Number of flexible elements, \(N\), for the approximation.
A larger number of flexible elements, \(N\), increases the accuracy of the model but reduces simulation performance, that is, simulation speed. The single-element model (\(N=1\)) exhibits an eigenfrequency that is close to the first eigenfrequency of the continuous, distributed parameter model.

If accuracy is more important than performance, select \(2,4,8\), or more flexible elements. For example, the four lowest eigenfrequencies are represented with an accuracy of 0.1, \(1.9,1.6\), and 5.3 percent, respectively, by a 16 -element model.

\section*{Viscous Losses}

\section*{Viscous friction coefficients at base (B) and follower (F) - Viscous friction coefficients}
[0, 0] N/(m/s) (default) | non-negative vector
Viscous friction coefficients at base port, B, and the follower port, F.

\section*{Initial Conditions}

\section*{Initial deflection - Initial deflection}

0 m (default) | non-negative scalar
Deflection of the rod at the start of simulation.
A positive initial deflection results in a positive translation of the base, \(\mathbf{B}\), end of the rod relative to the follower, \(\mathbf{F}\), end of the rod.

\section*{Initial velocity - Initial velocity}
\(0 \mathrm{~m} / \mathrm{s}\) (default) | non-negative scalar
Longitudinal velocity of the base, \(\mathbf{B}\), end of the rod relative to the follower, \(\mathbf{F}\), end of the rod at the start of simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Flexible Shaft | Mass | Translational Damper | Translational Spring

Introduced in R2018b

\section*{Rolling Resistance}

Model rolling resistance

\section*{Library}

Tires \& Vehicles/Tire Subcomponents

\section*{Description}

The block models the resistance force that acts on the wheel hub due to the rolling resistance at the road-wheel contact surface. The model can use a constant resistance coefficient or the pressure and velocity dependence of the SAE J2452 standard. The resistance force is zero when the normal force acting at the wheel-road surface is less than or equal to zero.

\section*{Constant Resistance Coefficient Model}

In the constant coefficient model, the rolling resistance is directly proportional to the resistance coefficient:
\(F=N \mu\)
where parameters represent the following quantities:
- F - Rolling resistance force
- \(N\) - Normal Force
- \(\mu\) - Rolling resistance coefficient

The rolling resistance coefficient has a hyperbolic form that eliminates discontinuity at \(\mathrm{v}_{\text {hub }}=0\) :
\(\mu=\mu_{0} \tanh \left(4 \mathrm{v}_{\text {hub }} / \mathrm{v}_{\text {threshold }}\right)\)
where parameters represent the following quantities:
- \(\mu_{0}\) - Asymptotic rolling resistance coefficient
- \(v_{\text {hub }}\) - Hub velocity
- \(v_{\text {threshold }}\) - Threshold velocity

\section*{Pressure and Velocity Dependent Model}

The pressure- and velocity-dependent model uses the following formula:
\[
F=\left(\frac{P}{P_{0}}\right)^{\alpha}\left(\frac{N}{N_{0}}\right)^{\beta} N_{0} \cdot\left(A+B\left|v_{h u b}\right|+C v_{h u b^{2}}\right)
\]
where parameters represent the following quantities:
- \(P\) - Tire pressure
- \(v_{\text {hub }}\) - Hub velocity
- \(\alpha, \beta, A, B, C-\) Approximating coefficients
- \(P_{0}-1\) Pascal (Pa)
- \(N_{0}-1\) Newton (N)

In the previous equation, parameters \(P_{0}\) and \(N_{0}\) remove the physical units from each exponential expression base.

Connection H is a mechanical translational conserving port that represents the hub of the tire. Connection N is a physical signal input port that represents the normal force acting on the tire. Normal force is positive if it points downward.

\section*{Parameters}

\section*{Resistance Model}

Select the model used to compute the rolling resistance on a wheel hub. The parameter provides two options:
- Constant coefficient
- Pressure and velocity dependent

The default value is Constant coefficient.

\section*{Constant Coefficient}

Selecting the Constant coefficient option exposes two model parameters: Constant coefficient and Velocity threshold.

\section*{Constant Coefficient}

Coefficient that sets the proportionality between the normal force and the rolling resistance force. The parameter must be greater than zero. The default value is 0.015 .

\section*{Velocity Threshold}

Velocity at which the full rolling resistance force is transmitted to the rolling hub. The parameter ensures the force remains continuous during velocity direction changes, which increases the numerical stability of the simulation. The parameter must be greater than zero. The default value is \(0.001 \mathrm{~m} / \mathrm{s}\).

\section*{Pressure and Velocity Dependent}

\section*{Tire pressure}

Inflation pressure of the tire. The parameter must be greater than zero. The default value is \(250 \mathrm{e}+3 \mathrm{~Pa}\).

\section*{Alpha}

Exponent of the tire pressure in the model equation. See "Pressure and Velocity Dependent Model" on page 1-464. The default value is -0.003 .

\section*{Beta}

Exponent of the normal force model equation. The default value is 0.97 .

\section*{Coefficient A}

Velocity independent force component in the model equation. The parameter must be greater than zero. The default value is \(84 \mathrm{e}-4\).

\section*{Coefficient B}

Velocity dependent force component in the model equation. The parameter must be greater than zero. The default value is \(6.2 \mathrm{e}-4 \mathrm{~s} / \mathrm{m}\).

\section*{Coefficient C}

Force component that depends on the square of the velocity term in the model equation. The parameter must be greater than zero. The default value is \(1.6 \mathrm{e}-4\) \(s^{\wedge} 2 / m^{\wedge} 2\).

\section*{Velocity Threshold}

Velocity at which the full rolling resistance force is transmitted to the rolling hub. The parameter ensures the force remains continuous during velocity direction changes, which increases the numerical stability of the simulation. The parameter must be greater than zero. The default value is \(1 \mathrm{e}-3 \mathrm{~m} / \mathrm{s}\).

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline N & Physical signal input port that represents the normal force \\
\hline H & Conserving translational port that represents the wheel hub \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Tire (Friction Parameterized) | Tire (Magic Formula) | Tire-Road Interaction (Magic Formula)

\author{
Introduced in R2012b
}

\section*{Rope Drum}

Power transmission system with tightly wound rope around cylindrical drum

\section*{Library}

Simscape / Driveline / Couplings \& Drives

\section*{Description}

This block represents a power transmission system with two key components:
- Rope
- Drum

The rope is tightly wound around the cylindrical drum, at a sufficient tension level to prevent slipping between the two components. The rope can be wound such that its ends point in equal or opposite directions. Depending on the rope configuration, the two rope ends can move in equal or opposite directions. The rope windup types that you specify in the block dialog box are:
- If the rope ends point in the same direction, they translate in opposite directions.
- If the rope ends point in opposite directions, they translate in the same direction.

During normal operation, a driving torque causes the cylindrical drum to rotate about its symmetry axis. The rotating drum transmits a tensile force to the rope ends, which translate with respect to the drum centerline. The relative direction of translation between the two rope ends depends on the rope windup type. However, a positive drum rotation always corresponds to a positive translation at rope end A.

The rope drum model assumes that each rope end remains taut during simulation. This assumption is important since slack rope ends do not transmit force. An optional tension warning indicates the failure of this assumption. The warning, which appears at the MATLAB command prompt, prompts careful analysis of the simulation results.

Optional effects in the rope drum model include:
- Drum inertia
- Viscous friction at the drum bearing

The net torque acting on the cylinder satisfies the force balance equation
\[
T=F_{B} \cdot R \cdot \delta-F_{A} \cdot R+\mu \cdot \omega,
\]
where:
- \(T\) is the net torque acting on the drum.
- \(F_{\mathrm{A}}\) and \(F_{\mathrm{B}}\) are the external forces pulling on rope ends A and B .
- \(R\) is the drum radius.
- \(\mu\) is the viscous friction coefficient at the drum bearings.
- \(\omega\) is the drum angular velocity.
- \(\delta\) is the rope windup type according to the table.
```

Rope Windup Type }
Ends move in the same direction -1
Ends move in opposite +1
directions

```

The figure shows the equation variables.

The translational velocities of the two rope ends are functions of the drum radius and angular velocity. Each translational velocity is equal to the tangential velocity of a point at the drum periphery according to the expressions:
\[
\begin{aligned}
V_{A} & =-\omega \cdot R, \\
V_{B} & =+\omega \cdot R,
\end{aligned}
\]
where:
- \(V_{\mathrm{A}}\) is the translational velocity of rope end A .
- \(V_{\mathrm{B}}\) is the translational velocity of rope end B .

\section*{Assumptions and Limitations}
- Slip does not occur at the rope-drum contact surface.
- Rope compliance is ignored.

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline S & Conserving rotational port associated with the drum shaft \\
\hline A & Conserving translational port associated with rope end A \\
\hline B & Conserving translational port associated with rope end B \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Rope Winding}

\section*{Drum radius}

Distance between the drum center and its periphery. The drum periphery coincides with the contact surface between the drum and the rope. The default value is 0.1 m .

\section*{Rope windup type}

Relative direction of the translation motion of the two rope ends, A and B. Options include:
- Ends move in the same direction
- Ends move in opposite direction

\section*{Tension warning}

Optional warning at the MATLAB command line indicating that at least one rope end has become slack. A rope end becomes slack when the net tensile forces responsible for keeping it taut fall below zero. Since slack cables do not transmit force, you must interpret simulation results carefully if a tension warning appears at the MATLAB command line. Warning options include:
- Do not check tension
- Warn if either end loses tension

\section*{Drum Dynamics}

\section*{Bearing viscous friction coefficient}

Linear damping coefficient in effect at the drum bearing. At a given drum angular velocity, this coefficient determines the power losses due to viscous friction. The default value is \(0.001(\mathrm{~N} * \mathrm{~m}) /(\mathrm{rad} / \mathrm{s})\).

\section*{Inertia}

Optional parameter accounting for drum inertia, its resistance to angular acceleration. Options include:
- No inertia - Default mode. Keep this mode if drum inertia has a negligible impact on driveline dynamics. Selecting this mode sets drum inertia to zero.
- Specify inertia and initial velocity - Select this mode if drum inertia has a significant impact on driveline dynamics. Selecting this mode exposes additional parameters enabling you to specify the drum inertia and initial angular velocity.

\section*{Drum inertia}

Moment of inertia of the drum about its rotation axis. In the simple case of a solid cylindrical drum, the moment of inertia is
\(I=\frac{1}{2} M R^{2}\),
where \(M\) is the drum mass and \(R\) is the drum radius.
The default value of the drum inertia is \(0.01 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Drum initial velocity}

Angular velocity of the drum at simulation time zero. The default value is \(0 \mathrm{rad} / \mathrm{s}\).

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Wheel and Axle

\section*{Topics}
"Basic Motion, Torque, and Force Modeling" "Power Window System"

\section*{Introduced in R2012a}

\section*{Rotational Damper}

Faultable linear rotational damper
Library: \(\begin{array}{ll} & \text { Simscape / Driveline / Couplings \& Drives } \\ & \text { Simscape / Foundation Library / Mechanical } \\ & \text { Simscape / Foundation Library / Mechanical / } \\ & \text { Rotational Elements }\end{array}\)

\section*{Description}

The Rotational Damper block models a faultable linear rotational viscous damper. From the start of the simulation, the block uses the nominal damping coefficient. If you enable faults for the block, the damping coefficient changes in response to one or both of these triggers:
- Simulation time - A fault occurs at a specified time.
- Simulation behavior - If the magnitude of the rotational acceleration exceeds a specified maximum value, the block increments the number of shocks by one. A fault occurs if the number of shocks exceeds a specified maximum number of shocks.

If a fault trigger event occurs, the block uses the faulted damping coefficient for the remainder of the simulation. You can program the block to issue a fault report as a warning or error message.

The defining equations are
\[
T=D \omega
\]
and
\[
\omega=\omega_{R}-\omega_{C},
\]
where
- \(T\) is the torque transmitted through the damper.
- \(D\) is the damping (viscous friction) coefficient.
- \(\omega\) is the relative velocity.
- \(\omega_{R}\) and \(\omega_{C}\) are the absolute velocities of terminals R and C , respectively.

The positive block direction is from port R to port C . Therefore, the torque is positive if it acts in the direction from R to C .

\section*{Ports}

\section*{Conserving}

R - Rod interface
mechanical rotational
Mechanical rotational conserving port associated with the rod interface.

\section*{C - Case interface}
mechanical rotational
Mechanical rotational conserving port associated with the case interface.

\section*{Parameters}

\section*{Main}

Damping coefficient - Damping coefficient for the no-fault condition
\(1 \mathrm{e}-3 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default)
The oscillation-reducing torque due to viscous friction that the block applies if no trigger event occurs. Specify a value that is greater than or equal to zero.

\section*{Faults}

Enable faults - Fault mode capability
0ff (default) | On
To enable the block to use a different damping coefficient based on the simulation time or when the magnitude of the rotational acceleration exceeds the specified number of shocks, select On.

\section*{Dependencies}

Selecting \(0 n\) makes these parameters visible:
- Faulted damping coefficient
- Enable temporal fault trigger
- Enable behavioral fault trigger
- Reporting when fault occurs

\section*{Faulted damping coefficient - Damping coefficient for the fault condition} \(100 \mathrm{~N} * \mathrm{~m} /\) (\(\mathrm{rad} / \mathrm{s}\)) (default)

The oscillation-reducing torque due to viscous friction that the block applies if a trigger event occurs. Specify a value that is greater than or equal to zero.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.

\section*{Enable temporal fault trigger - Fault trigger capability 0ff (default) | On}

To enable the block to use the faulted damping coefficient starting at a specified time in the simulation, select On.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.
Selecting On makes the Simulation time for fault event parameter visible.

\section*{Simulation time for fault event - Temporal fault trigger 5 s (default)}

Specify the time during the simulation that you want the block to start using the faulted damping coefficient.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter and On for the Enable temporal fault trigger parameter.

\author{
Enable behavioral fault trigger - Fault trigger capability Off (default) | On
}

To use the faulted damping coefficient when the number of sustained shocks exceeds a specified maximum number of shocks, select On.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.
Selecting On makes these parameters visible:
- Maximum permissible acceleration
- Maximum number of shocks

\section*{Maximum permissible acceleration - Behavioral fault trigger \(100 \mathrm{rad} / \mathrm{s}^{\wedge} 2\) (default)}

The maximum value that the magnitude of the rotational acceleration can reach without causing the block to increment the number of sustained shocks.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter and On for the Enable behavioral fault trigger parameter.

Maximum number of shocks - Behavioral fault trigger 1 (default)

The maximum number of shocks that can be sustained without triggering the block to use the faulted damping coefficient.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter and On for the Enable behavioral fault trigger parameter.

\section*{Reporting when fault occurs - Fault reporting None (default) | Warning | Error}

Select your reporting preference for the fault condition.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{Tm}}\).
}

\author{
See Also \\ Nonlinear Rotational Damper | Nonlinear Translational Damper | Translational Damper | \\ Variable Rotational Damper | Variable Translational Damper \\ Introduced in R2016b
}

\title{
Rotational Detent
}

Double-sided, spring-loaded rotational detent

\section*{Library}

Simscape / Driveline / Brakes \& Detents / Rotational

\section*{Description}

The Rotational Detent block represents a double-sided, spring-loaded rotational detent.
The detent rod rotates over the detent case. The case has notches or magnets that create a net relative torque with the rod as the rod rotates. With the block, you can model rotational detents with peak torque and notch width, or with a table lookup. The model also includes viscous damping and kinetic friction between the rod and case. You can set the friction to zero.

\section*{Rotational Detent Model}

As the rod rotates over the case, the relative rotation \(\phi=\phi_{R}-\phi_{C}\) causes a torque \(\tau\) to develop. Depending on your choice of parameterization, the torque model is defined by the peak torque and notch width, or by a table lookup specifying relative rotation versus torque.

Regardless of the parameterization, if you specify multiple detents, all detents have the same torque-relative rotation function.

\section*{Peak Torque and Notch Width}

If you choose the peak torque and notch width parameterization, the block ensures that the torque-relative rotation curve provides a continuous torque and torque derivative over
the detent region. The peak torques are halfway between the detent center and detent edge, as shown in the following figure.

\section*{By Table Lookup}

With the table lookup parameterization, you can create an arbitrary function relating torque to relative rotation. If you create such a function, consider the following best practices.

\section*{Energy Conservation}

If you want to ensure that the detent conserves energy, the total integral of the torquerelative rotation curve (area under the curve) must be zero.

\section*{Simulation Performance}

To stabilize simulation of the detent, avoid discontinuities in the torque-relative rotation function.

\section*{Limitations}
- The model does not account for inertia. Add inertia terms externally to the R and C ports as required.
- If you use the peak torque-notch width or the table lookup parameterization, the kinetic friction is independent of the detent normal force.

\section*{Ports}
\(\mathbf{R}\) and \(\mathbf{C}\) are rotational conserving ports associated with the rod and case, respectively.

\section*{Parameters}

\section*{Detent Characteristics}

\section*{Parameterization}

Select how to specify the detent characteristics. The default is By peak torque and notch width.
- By peak torque and notch width - Specify detent characteristics by the peak torque and the notch width.

\section*{Peak Torque and Notch Width}

\section*{Peak torque}

The peak torque developed inside the detent. The default is 0.25 .
From the drop-down list, choose units. The default is newton-meters (\(\mathrm{N} * \mathrm{~m}\)).

\section*{Notch width}

The width of the region where the torque develops. The default is 5 .
From the drop-down list, choose units. The default is degrees (deg).
- By table lookup - Define the detent characteristics by one-dimensional table lookup based on the relative displacement between the slider and case. If you select this option, the panel changes from its default option.

\section*{Table Lookup}

\section*{Relative rotation vector}

Specify the vector of input relative rotations that correspond to the values in Torque vector. These two vectors must be of the same size. The angles must
be specified in strictly increasing order. The default values are [-5.0-4.0 -3.0-1.0 1.0 3.0 4.0 5.0].

From the drop-down list, choose units. The default is degrees (deg).

\section*{Torque vector}

Specify the vector of input values for the developed torque that correspond to the values in Relative rotation vector. The default values are [0 0-0. 25 -0.10 0.10 0. 2500 0.

From the drop-down list, choose units. The default is newton-meters (\(\mathrm{N} * \mathrm{~m}\)).

\section*{Initial relative rotation}

The relative angle of the rod and case when simulation starts. The default is 0 .
From the drop-down list, choose units. The default is degrees (deg).

\section*{Interpolation method}

Select one of these interpolation methods for approximating the output value when the input value is between two consecutive grid points:
- Linear - Select this, default, option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Spacing}

\section*{Detent spacing}

Select how to specify the detent spacing. The default is Regularly spaced.
- Regularly spaced - Specify detent spacing by regular intervals.

Regular spacing

\section*{Number of detents}

Specify the number of identical, regularly spaced detents. Must be greater than or equal to 1 . The default is 1 .

Creates a number of detents evenly spaced from -180 to +180 degrees, with one detent center at 0 degrees. Non-integer values are rounded to the nearest integer.
- By angle vector - Specify detent spacing by custom intervals. If you select this option, the panel changes from its default option.

\section*{Custom intervals}

\section*{Vector of detent centers}

Specify the locations of the centers of identical detents as a vector of angles. These values must lie between -180 and +180 degrees. The minimum spacing between the detents must be greater than the Notch width parameter. The default values are [-40 030 85].

From the drop-down list, choose units. The default is degrees (deg).

\section*{Friction}

\section*{Viscous friction coefficient}

Specify the viscous friction coefficient for the rod-case contact. Must be greater than or equal to 0 . The default is 0.1 .

From the drop-down list, choose units. The default is newton-meters/(radians/second) (\(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\)).

\section*{Friction to peak torque ratio}

Specify the kinetic friction coefficient for the rod-case contact. Must be greater than or equal to 0 . The default is 0.01 .

The kinetic friction is this ratio multiplied by the peak torque.

\section*{Friction velocity threshold}

Specify the relative angular velocity required for peak kinetic friction in the detent. Must be greater than 0 . The default is 10 .

From the drop-down list, choose units. The default is revolutions/minute (rpm).

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Loaded-Contact Rotational Friction | Tire (Friction Parameterized) | Translational Detent
}

\section*{Topics}
"Clutches, Clutch-Like Elements, and Coulomb Friction"

Introduced in R2011b

\section*{Rotational Power Sensor}

Mechanical sensor used to measure average or instantaneous rotational power

\section*{Library}

Sensors

\section*{Description}

The block represents a sensor that measures the rotational power change due to one or more driveline components connected between ports R and C . The power output can be an instantaneous or average value. Three averaging options are available: period, vibration, and revolution averaging.

The instantaneous power is the product of the current angular velocity and torque. Use the instantaneous power to analyze peak power transmission and identify heavily loaded components.

The time-averaged power is the integral of the instantaneous power over one sample period, divided by that period. For simulation times smaller than the sample period, the average power is zero. The power output is constant for each sample period.

The vibration-averaged power is the integral of the power over one vibration period, divided by that period. The vibration period is the time between two consecutive crossings from negative to positive velocity values. If the vibration has a variable frequency, the averaging period can change. For simulation times smaller than the vibration period, the average power is zero. The power output is constant for each vibration period.

The revolution-averaged power is the integral of the instantaneous power over one revolution period, divided by that period. The revolution period is defined as the time between two consecutive crossings of zero angular position. If the revolution has a variable frequency, the averaging period can change. For simulation times smaller than the revolution period, the average power is zero. The power output is constant for each revolution period.

\section*{Parameters}

\section*{Measurement Type}

Select either instantaneous or average power measurement. The default type is Instantaneous Power.
- Instantaneous power - Output the rotational power measured for the current simulation time step.
- Average power over a specified period - Output the rotational power averaged over a fixed time period.

\section*{Averaging period}

Enter the time period used to compute the average power. Typical values include the cycle length of a rotating device.

The default value is 1 . The default unit is \(s\).
- Average power over a vibration - Output the rotational power averaged over one vibration period.

\section*{Maximum vibration frequency}

Enter the maximum vibration frequency over which to average the rotational power. Very high values can reduce simulation speed. Very low values can result in lower power measurements.

The default value is 1000. The default unit is Hz .
- Average power over a revolution - Output the rotational power averaged over one revolution period.

\section*{Maximum rotational speed}

Enter the maximum speed over which to average the rotational power. Very high values can reduce simulation speed. Very low values can result in lower power measurements.

The default value is 1000 . The default unit is \(r p m\).

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline P & Physical signal output port for rotational power \\
\hline S & Rotational conserving port associated with driving source \\
\hline R & Rotational conserving port associated with loaded driveline components \\
\hline C & \begin{tabular}{l}
Rotational conserving port associated with case holding loaded driveline \\
components
\end{tabular} \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Translational Power Sensor

\section*{Introduced in R2013a}

\section*{Rotational Velocity Noise Source}

Produce zero-mean normally (Gaussian) distributed rotational velocity Library: Simscape / Driveline / Sources

\section*{Description}

The Rotational Velocity Source block generates zero-mean normally (Gaussian) distributed rotational velocity using the Random Number source in the Simscape Foundation library. The rotational velocity produced by the block depends on two factors:
- The noise power spectral density input to the block
- A random number seed that you control using the Repeatability and, as applicable, Seed parameters

The defining equation for the rotational velocity that the block generates is
\[
v=\sqrt{P S D / 2} \frac{N(0,1)}{\sqrt{h}}
\]
where:
- \(v\) is the output rotational velocity.
- \(\quad P S D\) is the single-sided noise power spectral density.
- \(N\) is a Gaussian random number with zero mean and standard deviation of one.
- \(h\) is the sampling interval.

\section*{Ports}

\section*{Input}

\section*{P - Single-sided noise power spectral density physical signal}

The power spectral density (PSD) of noise is the average noise power per unit of bandwidth, in (rad/s) \({ }^{2} / \mathrm{Hz}\).

\section*{Conserving}

\section*{B - Base interface \\ mechanical rotational}

Mechanical rotational conserving port associated with the base interface.

\section*{F - Follower interface}
mechanical rotational
Mechanical rotational conserving port associated with the follower interface.

\section*{Parameters}

\section*{Sample time - Time step period and offset 1e-3 s (default)|[step, offset] s}

The values of the time step period and the initial time offset. If you specify a scalar value for step, the block assumes an offset value of 0 .To specify a nonzero value for the initial time offset, specify the parameter values using the vector [step, offset]. The offset value must be less than the step value and greater than or equal to zero.

\section*{Repeatability - Random number seed control}

Not repeatable (default)|Repeatable|Specify seed
The random number seed is the number that initializes the random number generator. The seed is 0 or a positive integer. To control the random number seed, set this parameter to:
- Not repeatable - The seed changes every time you simulate your model. The block resets the random seed using the MATLAB random number generator command:
seed \(=\) randi(2^32-1);
- Repeatable - The seed is the same random number at the start of every simulation. The block sets the value using the same MATLAB random number generator command used by the Not repeatable parameter.

When you add a Rotational Velocity Noise Source block to your model from the Sources library, the block generates and stores a random value for the repeated seed. When you make a copy of the Rotational Velocity Noise Source block from an existing block in a model, the copy generates a new random value for the repeated seed.
- Specify seed - The seed is a number that you specify using the Seed parameter. The Seed parameter is only available when you choose Specify seed for the Repeatability parameter.

\section*{Seed - Random number generation seed value}

0 (default)
The seed must be 0 or a positive integer. This parameter is only available when you select Specify seed for the Repeatability parameter.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\text {Coder }}{ }^{\mathrm{Tm}}\).

\section*{See Also}

\section*{Simscape Blocks}

Force Noise Source | Random Number | Sinusoidal Rotational Velocity Source | Torque
Noise Source | Translational Velocity Noise Source

\section*{Functions}
randi

\section*{Introduced in R2016b}

\section*{Shock Absorber}

Mechanism for damping translational vibrations

\section*{Library}

Simscape / Driveline / Couplings \& Drives

\section*{Description}

The Shock Absorber block represents a spring-damper system commonly used to dampen vibration in mechanical systems. An internal force acts between ports \(R\) and \(C\). This force is the sum of spring stiffness, damping, Coulomb friction, and hard-stop contributions. All force contributions are optional.

The Shock Absorber block uses the models of these blocks:
\begin{tabular}{|l|l|l|}
\hline Block & Contribution & Library \\
\hline \begin{tabular}{l}
Loaded-Contact \\
Translational Friction
\end{tabular} & Coulomb friction & \begin{tabular}{l}
Simscape / Driveline / \\
Brakes \& Detents / \\
Translational
\end{tabular} \\
\hline Rotational Damper & Damping & \begin{tabular}{l}
Simscape / Foundation \\
Library / Mechanical / \\
Translational Elements
\end{tabular} \\
\hline Rotational Spring & Spring & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Block & Contribution & Library \\
\hline Rotational Hard Stop & Hard stop & \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}
- Including hard-stop and Coulomb friction enhances model fidelity, but reduces simulation speed. For more information, see "Driveline Simulation Performance".

\section*{Ports}

\section*{Conserving}

\section*{C}

Mechanical translational port associated with the slider that travels between stops installed on the case.

\section*{R}

Mechanical translational port associated with the rod.

\section*{Parameters}

\section*{Spring-Damper}

\section*{Restoring spring stiffness}

Enter the value of the viscous spring stiffness constant, \(k\). The default value is 1 e 4 \(\mathrm{N} / \mathrm{m}\). The value must be greater than or equal to zero.

\section*{Viscous friction coefficient}

Enter the value of the viscous damping constant, \(b\). The default value is \(1 e 2 \mathrm{~m} / \mathrm{s}\). The value must be greater than or equal to zero.

\section*{Coulomb friction force}

Enter the value of the Coulomb friction force. Setting the value to 0 eliminates the Coulomb friction force contribution. This enhances simulation speed, making the model more suitable for HIL testing. The default value is 0 N . The value must be greater than or equal to zero.

\section*{Ratio of static to kinetic friction}

Enter the value of the static/kinetic friction ratio, that is \(F_{s} / F_{k}\). The value must be greater than one. The default value is 1.1. The value must be greater than or equal to one.

\section*{Velocity tolerance}

Enter the value of the relative velocity below which ports R and C lock and translate together. The default value is \(0.001 \mathrm{~m} / \mathrm{s}\). The value must be greater than zero.

\section*{Hard Stops}

\section*{Hard stop}

Include or exclude hard-stop force by selecting one of these options:
- No hard stops - Suitable for HIL simulation - To enhance simulation speed by excluding the hard-stop force contribution, select this default option.
- Compliant hard stops - To enhance model fidelity by including the hard-stop force contribution, select this option. Selecting this option enables other parameters.

\section*{Upper bound}

Upper hard-stop position, UB. Positive displacement beyond the upper bound activates the hard-stop contact force. The default value is 0.1 m . The value must be greater than the lower bound.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Lower bound}

Lower hard-stop position, \(L B\). Negative displacement beyond the lower bound activates the hard-stop contact force. The default value is -0.1 m . The value must be smaller than the upper bound.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Contact stiffness}

Enter the value of the hard-stop stiffness constant, \(k_{H S}\). The default value is \(1 \mathrm{e} 6 \mathrm{~N} / \mathrm{m}\). The value must be greater than or equal to zero.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Contact damping}

Enter the value of the hard-stop damping constant, \(b_{H S}\). This parameter specifies dissipating property of colliding bodies. The greater the value of the parameter, the more energy dissipates during an interaction. The default value is \(1 \mathrm{e} 4 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\). The value must be greater than zero.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Hard stop model}

Select the hard-stop model:
- Stiffness and damping applied smoothly through transition region, damped rebound - Specify a transition region, in which the force is scaled from zero. At the end of the transition region, the full stiffness and damping are applied. This model has damping applied on the rebound, but it is limited to the value of the stiffness force. In this sense, damping can reduce or eliminate the force provided by the stiffness, but never exceed it. All equations are smooth and produce no zero crossings.

Selecting this option enables the Transition region parameter.
- Full stiffness and damping applied at bounds, undamped rebound - This model has full stiffness and damping applied with impact at upper and lower bounds, with no damping on the rebound. Equations produce no zero crossings when velocity changes sign, but there is a position-based zero crossing at the bounds. Having no damping on rebound helps to push the slider past this position quickly. This model has nonlinear equations.
- Full stiffness and damping applied at bounds, damped rebound This model has full stiffness and damping applied with impact at upper and lower bounds, with damping applied on the rebound as well. Equations are switched linear, but produce position-based zero crossings. Use this hard-stop model if simscape.findNonlinearBlocks indicates that this is the block that prevents the whole network from being switched linear.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Transition region}

Region where the force is ramped up from zero to the full value. At the end of the transition region, the full stiffness and damping are applied. The default value is 0.1 mm.

Selecting Stiffness and damping applied smoothly through transition region, damped rebound for the Hard stop model enables this parameter.

\section*{Initial Conditions}

\section*{Initial deformation}

Enter the initial value of the spring deformation. The default value is 0 m .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Hard Stops > Hard stop parameter default setting, No hard stops - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

\section*{Simscape Blocks}

Nonlinear Translational Damper | Nonlinear Translational Spring | Rotational Hard Stop | Variable Translational Damper | Variable Translational Spring

\section*{Topics \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" \\ Introduced in R2013a}

\section*{Simple Gear}

Simple gear of base and follower wheels with adjustable gear ratio, friction losses, and triggered faults

\author{
Library: Simscape / Driveline / Gears
}

\section*{Description}

The Simple Gear block represents a gearbox that constrains the connected driveline axes of the base gear, \(B\), and the follower gear, \(F\), to corotate with a fixed ratio that you specify. You choose whether the follower axis rotates in the same or opposite direction as the base axis. If they rotate in the same direction, the angular velocity of the follower, \(\omega_{F}\), and the angular velocity of the base, \(\omega_{B}\), have the same sign. If they rotate in opposite directions, \(\omega_{F}\) and \(\omega_{B}\) have opposite signs.

\section*{Ideal Gear Constraint and Gear Ratio}

The kinematic constraint that the Simple Gear block imposes on the two connected axes is
\[
r_{F} \omega_{F}=r_{B} \omega_{B}
\]
where:
- \(r_{F}\) is the radius of the follower gear.
- \(\omega_{F}\) is the angular velocity of the follower gear.
- \(r_{B}\) is the radius of the base gear.
- \(\omega_{B}\) is the angular velocity of the base gear.

The follower-base gear ratio is
\[
g_{F B}=\frac{r_{F}}{r_{B}}=\frac{N_{F}}{N_{B}}
\]
where:
- \(N_{B}\) is the number of teeth in the base gear.
- \(N_{B F}\) is the number of teeth in the follower gear.

Reducing the two degrees of freedom to one independent degree of freedom yields the torque transfer equation
\[
g_{F B} \tau_{B}+\tau_{F}-\tau_{\text {loss }}=0
\]
where:
- \(\tau_{B}\) is the input torque.
- \(\tau_{F}\) is the output torque.
- \(\tau_{\text {loss }}\) is the torque loss due to friction.

For the ideal case, \(\tau_{\text {loss }}=0\).

\section*{Nonideal Gear Constraint and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). For general considerations on nonideal gear modeling, see "Model Gears with Losses".

In a nonideal gear pair (\(\mathrm{B}, \mathrm{F}\)), the angular velocity, gear radii, and gear teeth constraints are unchanged. But the transferred torque and power are reduced by:
- Coulomb friction between teeth surfaces on gears \(B\) and \(F\), characterized by efficiency, \(\eta\)
- Viscous coupling of driveshafts with bearings, parametrized by viscous friction coefficients, \(\mu\)

\section*{Constant Efficiency}

In the constant efficiency case, \(\eta\) is constant, independent of load or power transferred.

\section*{Load-Dependent Efficiency}

In the load-dependent efficiency case, \(\eta\) depends on the load or power transferred across the gears. For either power flow,
\[
\tau_{\text {Coul }}=g_{F B} \tau_{\text {idle }}+k \tau_{F}
\]
where:
- \(\tau_{\text {Coul }}\) is the Coulomb friction dependent torque.
- \(k\) is a proportionality constant.
- \(\tau_{\text {idle }}\) is the net torque acting on the input shaft in idle mode.

Efficiency, \(\eta\), is related to \(\tau_{\text {Coul }}\) in the standard, preceding form but becomes dependent on load:
\[
\eta=\frac{\tau_{F}}{g_{F B} \tau_{i d l e}+(k+1) \tau_{F}}
\]

\section*{Faults}

If you enable faults for the block, the efficiency changes in response to one or both of these triggers:
- Simulation time - A fault occurs at a specified time.
- Simulation behavior - A fault occurs in response to an external trigger. Enabling an external fault trigger exposes port T.

If a fault trigger occurs, for the remainder of the simulation, the block uses the faulted efficiency in one of these ways:
- Throughout rotation
- When the rotation angle is within a faulted range that you specify

You can program the block to issue a fault report as a warning or error message.

\section*{Thermal Model}

You can model the effects of heat flow and temperature change by selecting a thermal block variant. Selecting a thermal variant:
- Exposes port \(\mathbf{H}\), a conserving port in the thermal domain.
- Enables the Thermal mass parameter, which allows you to specify the ability of the component to resist changes in temperature.
- Enables the Initial Temperature parameter, which allows you to set the initial temperature.

To select a thermal variant, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port.

\section*{Assumptions}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}

\section*{Input}

\section*{T - External fault trigger \\ physical signal}

Physical signal input port for an external fault trigger.

\section*{Dependencies}

To expose the T port:
1 For the Meshing Losses Friction model parameter, select Constant efficiency or Load-dependent efficiency.
2 For the Faults Enable faults parameter, select On.
3 For the Faults Enable external fault trigger parameter, select On.
4 Click OK or Apply.
For information on related dependencies, see "Parameter Dependencies Table" on page 1501.

\section*{Conserving}

\section*{B - Base}
rotational mechanical
Rotational mechanical conserving port associated with the base, or input, shaft.

\section*{F - Follower}
rotational mechanical
Rotational mechanical conserving port associated with the follower, or output, shaft.

\section*{H - Heat}
thermal
Thermal port associated with heat flow. Heat flow affects gear temperature, and therefore, power transmission efficiency.

\section*{Dependencies}

The thermal conserving port is optional and is hidden by default. To expose the port, select a variant that includes a thermal port.

Selecting a thermal variant enables thermal parameters. For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Parameters}

\section*{Parameter Dependencies Table}

The table shows how the visibility of some Meshing Losses parameters and Faults parameters depend on the thermal model and the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B2.
\(\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Default Model - For nonthermal } \\
\text { models, thermal port H is not visible. }\end{array} & \begin{array}{l}\text { Thermal Model - For thermal models, } \\
\text { thermal port H is visible. }\end{array} \\
\hline \text { Meshing Losses } & \text { Meshing Losses } \\
\hline \begin{array}{l}\text { Friction model - Choose No meshing } \\
\text { losses - Suitable for HIL } \\
\text { simulation, Constant efficiency, } \\
\text { or Load-dependent efficiency }\end{array} & \begin{array}{l}\text { Friction model - Choose Temperature- } \\
\text { dependent efficiency or } \\
\text { Temperature and load-dependent } \\
\text { efficiency }\end{array} \\
\hline \begin{array}{l}\text { No } \\
\text { mes } \\
\text { hing }\end{array} & \text { Constant efficiency } & \begin{array}{l}\text { Load- } \\
\text { dependent } \\
\text { efficiency }\end{array}\end{array} \begin{array}{l}\text { Temperature- } \\
\text { dependent } \\
\text { efficiency }\end{array} \quad \begin{array}{l}\text { Temperature and load- } \\
\text { dependent efficiency }\end{array}\right]\)\begin{tabular}{l}
lemen \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Default Model - For nonthermal models, thermal port H is not visible.} & \multicolumn{2}{|l|}{Thermal Model - For thermal models, thermal port H is visible.} \\
\hline \multicolumn{4}{|l|}{Meshing Losses} & \multicolumn{2}{|l|}{Meshing Losses} \\
\hline \multicolumn{4}{|l|}{Friction model - Choose No meshing losses - Suitable for HIL simulation, Constant efficiency, or Load-dependent efficiency} & \multicolumn{2}{|l|}{Friction model - Choose Temperaturedependent efficiency or Temperature and load-dependent efficiency} \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { loss } \\
\text { es - } \\
\text { Suit } \\
\text { able } \\
\text { for } \\
\text { HIL } \\
\text { sim } \\
\text { ulati } \\
\text { on }
\end{array}
\]} & \multicolumn{2}{|l|}{Efficiency} & Input shaft torque at no load & Temperature & Temperature \\
\hline & Follo thres & \begin{tabular}{l}
power \\
d
\end{tabular} & Nominal output torque & Efficiency & Load at base gear \\
\hline & & & Efficiency at nominal output torque & Follower power threshold & Efficiency matrix \\
\hline & & & Follower angular velocity threshold & & Follower angular velocity threshold \\
\hline \multirow[t]{10}{*}{Faul ts} & \multicolumn{5}{|l|}{Faults} \\
\hline & \multicolumn{5}{|l|}{Enable faults - Choose Off or On} \\
\hline & \multirow[t]{8}{*}{Off} & \multicolumn{4}{|l|}{On} \\
\hline & & \multicolumn{4}{|l|}{Faulted efficiency} \\
\hline & & \multicolumn{4}{|l|}{Enable external fault trigger - Choose Off or On. Selecting On makes thermal port \(\mathbf{T}\) visible.} \\
\hline & & \multicolumn{4}{|l|}{Enable temporal fault trigger - Choose Off or On} \\
\hline & & \multirow[t]{2}{*}{Off} & & & \\
\hline & & & ion time for fau & ult event & \\
\hline & & \multicolumn{4}{|l|}{Faulted angle range} \\
\hline & & \multicolumn{4}{|l|}{Reporting when fault occurs - Choose None, or Warning, or Error} \\
\hline
\end{tabular}

\section*{Main}

\section*{Follower (F) to base (B) teeth ratio (NF/NB) - Gear ratio 2 (default) | positive scalar}

Fixed ratio \(g_{F B}\) of the follower axis to the base axis. The gear ratio must be strictly positive.

\section*{Output shaft rotates - Motion direction}

In opposite direction to input shaft (default)|In same direction as input shaft

Direction of motion of the follower (output) driveshaft relative to the motion of the base (input) driveshaft.

\section*{Meshing Losses}

Meshing losses parameters depend on the thermal model. For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Default (Nonthermal) Meshing Losses Parameters}

\section*{Friction model - Default friction model}

\section*{No meshing losses - Suitable for HIL simulation (default)|Constant efficiency|Load-dependent efficiency}

Friction models at various precision levels for estimating power losses due to meshing.
- No meshing losses - Suitable for HIL simulation - Neglect friction between gear cogs. Meshing is ideal.
- Constant efficiency - Reduce torque transfer by a constant efficiency factor. This factor falls in the range \(0<\eta \leq 1\) and is independent from load.
- Load-dependent efficiency - Reduce torque transfer by a variable efficiency factor. This factor falls in the range \(0<\eta<1\) and varies with the torque load.

\section*{Dependencies}

This parameter is visible when you choose a thermal model. This parameter affects the visibility of other Meshing Losses parameters and Faults parameters.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Efficiency - Torque transfer efficiency, \(\boldsymbol{\eta}\)}

\section*{0.8 (default) \(0 \leq \eta<1\)}

Torque transfer efficiency, \(\eta\), between base and follower shafts. Efficiency is inversely proportional to the meshing power losses.

\section*{Dependencies}

This parameter is visible when you choose a nonthermal model and set Friction model to Constant efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Follower power threshold - Efficiency factor power basis}

\subsection*{0.001 W (default) | positive scalar}

Absolute value of the follower shaft power above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor to 1 , lowering the efficiency losses to 0 when no power is transmitted.

As a guideline, the power threshold should be lower than the expected power transmitted during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values tend to raise the computational cost of simulation.

\section*{Dependencies}

This parameter is visible when you choose a nonthermal model and set Friction model to Constant efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Input shaft torque at no load - No-load torque \\ 0.1 N*m (default) | positive scalar}

Net torque, \(\tau_{\text {idle }}\), acting on the input shaft in idle mode, that is, when torque transfer to the output shaft equals zero. For nonzero values, the power input in idle mode completely dissipates due to meshing losses.

\section*{Dependencies}

This parameter is visible when you choose a nonthermal model and set Friction model to Load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Nominal output torque - Nominal torque}

\section*{\(5 \mathrm{~N} * \mathrm{~m}\) (default) | positive scalar}

Output torque, \(\tau_{\mathrm{F}}\), at which to normalize the load-dependent efficiency.

\section*{Dependencies}

This parameter is visible when you choose a nonthermal model and set Friction model to Load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Efficiency at nominal output torque - Nominal efficiency, \(\boldsymbol{\eta}\)} 0.8 (default) \(|0 \leq \eta<1|\) scalar

Torque transfer efficiency, \(\eta\), at the nominal output torque. Larger efficiency values correspond to greater torque transfer between the input and output shafts.

\section*{Dependencies}

This parameter is visible when you choose a nonthermal model and set Friction model to Load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Follower angular velocity threshold - Efficiency factor angular velocity basis \\ \(0.01 \mathrm{rad} / \mathrm{s}\) (default) | positive scalar}

Absolute value of the follower shaft angular velocity above which the full efficiency factor is in effect, \(\omega_{F}\). Below this value, a hyperbolic tangent function smooths the efficiency factor to one, lowering the efficiency losses to zero when at rest.

As a guideline, the angular velocity threshold should be lower than the expected angular velocity during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values tend to raise the computational cost of simulation.

\section*{Dependencies}

This parameter is visible when you choose a nonthermal model and set Friction model to Load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Thermal Model Meshing Losses Parameters}

\section*{Friction model - Thermal friction model \\ Temperature-dependent efficiency (default)|Temperature and loaddependent efficiency}

Friction models at various precision levels for estimating power losses due to meshing. The block incorporates temperature dependencies and can incorporate load dependencies.

Friction models at various precision levels for estimating power losses due to meshing.
- Temperature-dependent efficiency - Reduce torque transfer by a constant efficiency factor that is dependent on temperature but does not consider the gear load. This factor falls in the range \(0<\eta \leq 1\) and is independent from load.
- Load-dependent efficiency - Reduce torque transfer by a variable efficiency factor that is dependent on temperature and load. This factor falls in the range \(0<\eta\) \(<1\) and varies with the torque load.

\section*{Dependencies}

This parameter is visible when you choose a thermal model. This parameter affects the visibility of other Meshing Losses parameters.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Temperature - Temperature}
[280, 300, 320] K (default) | positive array
Array of temperatures used to construct an efficiency lookup table. The array values must increase from left to right. The temperature array must be the same size as the efficiency array in temperature-dependent models. The array must be the same size as a single row of the efficiency matrix in temperature and load dependent models.

\section*{Dependencies}

This parameter is visible for thermal models.
For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Efficiency - Efficiency, \(\boldsymbol{\eta}\)}
```

[.95, .9, .85] (default)| 0 \leq \eta<1| array

```

Array of efficiencies used to construct a 1-D temperature-efficiency lookup table for temperature-dependent efficiency models. The array values are the efficiencies at the temperatures in the Temperature array. The number of elements must be the same as the number of elements in the Temperature array.

\section*{Dependencies}

This parameter is visible for thermal models when you set Friction model to Temperature-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Follower power threshold - Efficiency factor power basis 0.001 W (default) | positive array}

Absolute value of the follower shaft power above which the full efficiency factor is in effect, \(p_{F}\). Below this value, a hyperbolic tangent function smooths the efficiency factor to 1 , lowering the efficiency losses to 0 when no power is transmitted.

As a guideline, the power threshold should be lower than the expected power transmitted during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values tend to raise the computational cost of simulation.

\section*{Dependencies}

This parameter is visible for thermal models when you set Friction model to Temperature-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Load at base gear - Base gear load}
[1, 5, 10] \(N * m\) (default) | positive array
Array of base-gear loads used to construct a 2-D temperature load efficiency lookup table for temperature and load dependent efficiency models. The array values must increase left to right. The load array must be the same size as a single column of the efficiency matrix.

\section*{Dependencies}

This parameter is visible when you choose a thermal model and set Friction model to Temperature and load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Efficiency matrix - Efficiency}
[.85, . \(8, .75 ; .95, .9, .85 ; .85, .8, .7]\) (default) \(|0 \leq \eta<1|\) positive array
Matrix of component efficiencies used to construct a 2-D temperature load efficiency lookup table. The matrix elements are the efficiencies at the temperatures given by the Temperature array and at the loads given by the Load at base gear array.

The number of rows must be the same as the number of elements in the Temperature array. The number of columns must be the same as the number of elements in the Load at base gear array.

\section*{Dependencies}

This parameter is visible when you choose a thermal model and set Friction model to Temperature and load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Follower angular velocity threshold - Efficiency factor angular velocity basis}
\(0.01 \mathrm{rad} / \mathrm{s}\) (default) | positive scalar
Absolute value of the follower shaft angular velocity above which the full efficiency factor is in effect, \(\omega_{F}\). Below this value, a hyperbolic tangent function smooths the efficiency factor to one, lowering the efficiency losses to zero when at rest.

As a guideline, the angular velocity threshold should be lower than the expected angular velocity during simulation. Higher values might cause the block to underestimate efficiency losses. Very low values tend to raise the computational cost of simulation.

\section*{Dependencies}

This parameter is visible when you choose a thermal model and set Friction model to Temperature and load-dependent efficiency.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Viscous Losses}

\section*{Viscous friction coefficients at base (B) and follower (F) Coefficients of viscous friction}

\author{
[0, 0] N*m/(rad/s) (default) | positive array
}

Two-element array with the viscous friction coefficients in effect at the base and follower shafts. To neglect viscous losses, use the default setting, [0, 0].

\section*{Faults}

For nonthermal models, Faults parameters are not visible when you set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation.

Enable faults - Fault option
on (default) | off
Enable externally or temporally triggered faults.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation. This parameter affects the visibility of other Faults parameters.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Faulted efficiency - Faulted efficiency}
0.05 (default) \(|0 \leq \eta<1|\) scalar

Efficiency when a fault is triggered.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation or when you set the Enable faults parameter to off.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Enable external fault trigger - External fault trigger option on (default) | off}

Option to enable an externally triggered fault.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL
simulation or when you set the Enable faults parameter to off. When you select on for this parameter, the T port is exposed.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Enable temporal fault trigger - Temporal fault trigger option on (default) | off}

Option to enable a temporally triggered fault.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation or when you set the Enable faults parameter to off. When you select on for this parameter, the Simulation time for fault event parameter becomes visible.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Simulation time for fault event - Fault time trigger \\ 5 s (default) | positive scalar}

Simulation time that triggers a temporal fault.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation, or when you set the Enable faults parameter to on and set the Enable temporal fault trigger parameter to off.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Faulted angle range - Fault angle range}
```

pi / 12 rad (default)

```

Rotational angle range for the faulted efficiency. For a value or multiples of \(2 \pi\) rad, the faulted efficiency is applicable throughout rotation.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation or when you set the Enable faults parameter to off.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Reporting when fault occurs - Fault report None (default) | Warning | Error}

Reporting preference for the fault condition.

\section*{Dependencies}

This parameter is not visible when you choose a nonthermal model and set the Meshing Losses Friction model parameter to No meshing losses - Suitable for HIL simulation or when you set the Enable faults parameter to off.

For more information, see "Parameter Dependencies Table" on page 1-501.

\section*{Thermal Port}

\section*{Thermal mass - Thermal mass}

50 J/K (default) | positive scalar
Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

Selecting a thermal block variant for the Block choice parameter makes this parameter visible.

\section*{Initial temperature - Temperature \\ 300 K (default) | positive scalar}

Temperature at simulation start.

\section*{Dependencies}

Selecting a thermal block variant for the Block choice parameter makes this parameter visible.

\section*{More About}

\section*{Real-Time and Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathbb{C o d e r}^{\mathrm{TM}}\).

\section*{See Also}

Variable Ratio Transmission

\section*{Topics}
"Basic Motion, Torque, and Force Modeling"
"Gearbox Efficiency Measurement"
"Simple Gear"
"Gear with Backlash"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

Introduced in R2011a

\section*{Simple Gear with Variable Efficiency}

Gear set with parallel-axis rotation and variable meshing efficiency

\section*{Library}

Gears

\section*{Description}

The block represents a simple gear train with variable meshing efficiency. The gear train transmits torque at a specified ratio between base and follower shafts arranged in a parallel configuration. Shaft rotation can occur in equal or opposite directions. Gear losses are optional. They include meshing and viscous bearing losses. To specify the variable meshing efficiency, the block contains a physical signal port that you can use to input a general time-varying signal. Inertia and compliance effects are ignored.

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Specify the associated thermal parameters for the component.

\section*{Parameters}

\section*{Main}

\section*{Follower (F) to base (B) teeth ratio (NF/NB)}

Enter the gear ratio. This is the fraction of follower over base gear teeth numbers, NF/NB. The ratio must be positive. The default value is 2 .

\section*{Output shaft rotates}

Select the relative rotation between shafts. This is the rotation direction of the output shaft with respect to the input shaft. Options include equal or opposite directions. The default setting is In opposite direction to input shaft.

\section*{Meshing Losses}

\section*{Minimum efficiency}

Enter the smallest efficiency value allowed for the gear. The efficiency is the power ratio between output and input shafts. The physical signal input saturates for values below the minimum efficiency or above 1 . The minimum efficiency must be positive. The default value is 0.01 .

\section*{Follower power threshold}

Enter the follower shaft power above which full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero when at rest and the value provided by the temperature-efficiency lookup table when at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Viscous friction coefficients at base (B) and follower (F)}

Enter a two-element vector with the viscous friction coefficients of the base and follower gears. Coefficients must be positive. The default vector is [0 0]. The default unit is \(\mathrm{N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Simple Gear Model}

\section*{Ideal Gear Constraint and Gear Ratio}

Simple Gear imposes one kinematic constraint on the two connected axes:
\(r_{\mathrm{F}} \omega_{\mathrm{F}} \quad=\quad r_{\mathrm{B}} \omega_{\mathrm{B}}\)

The follower-base gear ratio \(g_{\mathrm{FB}}=r_{\mathrm{F}} / r_{\mathrm{B}}=N_{\mathrm{F}} / N_{\mathrm{B}} . N\) is the number of teeth on each gear. The two degrees of freedom reduce to one independent degree of freedom.

The torque transfer is:
```

g\mp@code{FB}\mp@subsup{\tau}{\textrm{B}}{}+\quad+\quad\mp@subsup{\tau}{\textrm{F}}{}

```
with \(\tau_{\text {loss }}=0\) in the ideal case.

\section*{Nonideal Gear Constraint and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). For general considerations on nonideal gear modeling, see "Model Gears with Losses".

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline B & Rotational conserving port representing the base shaft \\
\hline F & Rotational conserving port representing the follower shaft \\
\hline H & Thermal conserving port for thermal modeling \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Simple Gear | Variable Ratio Transmission \\ \section*{Topics} \\ "Basic Motion, Torque, and Force Modeling" \\ Introduced in R2013a
}

\section*{Sinusoidal Force Source}

Produce sinusoidal force
Library: Simscape / Driveline / Sources

\section*{Description}

The Sinusoidal Force Source block produces sinusoidal force with a constant offset. A positive force value generates force acting from port B to port F.

The defining equation for the sinusoidal force that the block generates is
\[
F=F_{o}+A * \sin (2 \pi f t+\varphi),
\]
where:
- \(F\) is the output force.
- \(F_{o}\) is the offset force of the output.
- A is the peak amplitude of the sinusoid.
- \(f\) is frequency of the sinusoid in Hz .
- \(t\) is time.
- \(\varphi\) is phase shift of the sinusoid.

\section*{Ports}

\section*{Conserving}

\section*{B - Base interface}
mechanical translational
Mechanical translational conserving port associated with the base interface.

\section*{F - Follower interface \\ mechanical translational}

Mechanical translational conserving port associated with the follower interface.

\section*{Parameters}

Offset - Output average value 0 N (default)

Average value that the output sinusoidal force oscillates about.

\section*{Sinusoid peak amplitude - Output peak amplitude 1 N (default)}

Peak amplitude of the output sinusoidal force.

\section*{Phase shift - Output phase shift 0 deg (default)}

Phase shift of the output sinusoidal force.

\section*{Frequency - Output frequency}

\section*{1 Hz (default)}

Frequency of the output sinusoidal force. The frequency must be greater than or equal to 0.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\text {Coder }}{ }^{\mathrm{TM}}\).

\section*{See Also \\ Force Noise Source | Sinusoidal Rotational Velocity Source | Sinusoidal Torque Source | Sinusoidal Translational Velocity Source}

\section*{Introduced in R2016b}

\section*{Sinusoidal Rotational Velocity Source}

Produce sinusoidal rotational velocity
Library: Simscape / Driveline / Sources

\section*{Description}

The Sinusoidal Rotational Velocity Source block produces sinusoidal rotational velocity with a constant offset.

The relative rotational velocity between the base and follower interfaces is
\[
v_{F B}=v_{F}-v_{B},
\]
where:
- \(v_{F B}\) is the relative rotational velocity.
- \(v_{F}\) is the absolute rotational velocity at the follower interface.
- \(v_{B}\) is the absolute rotational velocity at the base interface.

The defining equation for the sinusoidal rotational velocity that the block generates is
\[
v=v_{o}+A * \sin (2 \pi f t+\varphi),
\]
where:
- \(v\) is the output rotational velocity.
- \(v_{o}\) is the offset rotational velocity of the output.
- \(A\) is the peak amplitude of the sinusoid.
- \(f\) is frequency of the sinusoid in Hz .
- \(t\) is time.
- \(\varphi\) is phase shift of the sinusoid.

\section*{Ports}

\section*{Conserving}

\section*{B - Base interface}
mechanical rotational
Mechanical rotational conserving port associated with the base interface.

\section*{F - Follower interface}
mechanical rotational
Mechanical rotational conserving port associated with the follower interface.

\section*{Parameters}

Offset - Output average value
\(0 \mathrm{rad} / \mathrm{s}\) (default)
Average value that the output sinusoidal rotational velocity oscillates about.

\section*{Sinusoid peak amplitude - Output peak amplitude \\ \(1 \mathrm{rad} / \mathrm{s}\) (default)}

Peak amplitude of the output sinusoidal rotational velocity.

\section*{Phase shift - Output phase shift}

0 deg (default)
Phase shift of the output sinusoidal rotational velocity.

\section*{Frequency - Output frequency}

1 Hz (default)
Frequency of the output sinusoidal rotational velocity. The frequency must be greater than or equal to 0 .

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathbb{C o d e r}^{\mathrm{Tm}}\).
}

\author{
See Also \\ Rotational Velocity Noise Source | Sinusoidal Force Source | Sinusoidal Torque Source | Sinusoidal Translational Velocity Source \\ Introduced in R2016b
}

\section*{Sinusoidal Torque Source}

Produce sinusoidal torque
Library: Simscape / Driveline / Sources

\section*{Description}

The Sinusoidal Torque Source block produces sinusoidal torque with a constant offset. A positive torque value generates torque acting from port B to port F.

The defining equation for the sinusoidal torque that the block generates is
\[
T=T_{o}+A * \sin (2 \pi f t+\varphi)
\]
where:
- T is the output torque.
- \(T_{o}\) is the offset torque of the output.
- \(A\) is the peak amplitude of the sinusoid.
- \(f\) is frequency of the sinusoid in Hz .
- \(t\) is time.
- \(\varphi\) is phase shift of the sinusoid.

\section*{Ports}

\section*{Conserving}

\section*{B - Base interface}
mechanical rotational
Mechanical rotational conserving port associated with the base interface.

\section*{F - Follower interface \\ mechanical rotational}

Mechanical rotational conserving port associated with the follower interface.

\section*{Parameters}

Offset - Output average value \(0 \mathrm{~N} * \mathrm{~m}\) (default)

Average value that the sinusoidal output torque oscillates about.

\section*{Sinusoid peak amplitude - Output peak amplitude 1 N*m (default)}

Peak amplitude of the sinusoidal output torque.

\section*{Phase shift - Output phase shift 0 deg (default)}

Peak amplitude of the sinusoidal output torque.

\section*{Frequency - Output frequency}

\section*{1 Hz (default)}

Frequency of the sinusoidal output torque. The frequency must be greater than or equal to 0 .

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Sinusoidal Force Source | Sinusoidal Rotational Velocity Source | Sinusoidal Translational Velocity Source | Torque Noise Source

\section*{Introduced in R2016b}

\section*{Sinusoidal Translational Velocity Source}

Produce sinusoidal translational velocity
Library: Simscape / Driveline / Sources

\section*{Description}

The Sinusoidal Translational Velocity Source block produces sinusoidal translational velocity with a constant offset.

The relative translational velocity between the base and follower interfaces is
\[
v_{F B}=v_{F}-v_{B},
\]
where:
- \(v_{F B}\) is the relative translational velocity.
- \(v_{F}\) is the absolute translational velocity at the follower interface.
- \(v_{B}\) is the absolute translational velocity at the base interface.

The defining equation for the sinusoidal translational velocity that the block generates is
\[
v=v_{o}+A * \sin (2 \pi f t+\varphi),
\]
where:
- \(v\) is the output translational velocity.
- \(v_{o}\) is the offset translational velocity of the output.
- \(A\) is the peak amplitude of the sinusoid.
- \(f\) is frequency of the sinusoid in Hz .
- \(t\) is time.
- \(\varphi\) is phase shift of the sinusoid.

\section*{Ports}

\section*{Conserving}

\section*{B - Base interface}
mechanical translational
Mechanical translational conserving port associated with the base interface.

\section*{F - Follower interface \\ mechanical translational}

Mechanical translational conserving port associated with the follower interface.

\section*{Parameters}

\section*{Offset - Output average value}
\(0 \mathrm{~m} / \mathrm{s}\) (default)
Average value that the output sinusoidal translational velocity oscillates about.

\section*{Sinusoid peak amplitude - Output peak amplitude \\ \(1 \mathrm{~m} / \mathrm{s}\) (default)}

Peak amplitude of the output sinusoidal translational velocity.

\section*{Phase shift - Output phase shift}

0 deg (default)
Phase shift of the output sinusoidal translational velocity

\section*{Frequency - Output frequency}

1 Hz (default)
Frequency of the output sinusoidal translational velocity. The frequency must be greater than or equal to 0 .

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Sinusoidal Force Source | Sinusoidal Rotational Velocity Source | Sinusoidal Torque Source | Translational Velocity Noise Source \\ Introduced in R2016b
}

\section*{Sun-Planet}

Planetary gear set of carrier, planet, and sun wheels with adjustable gear ratio and friction losses

\section*{Library}

Simscape / Driveline / Gears / Planetary Subcomponents

\section*{Description}

The Sun-Planet gear block represents a set of carrier, planet, and sun gear wheels. The planet is connected to and rotates with respect to the carrier. The planet and sun corotate with a fixed gear ratio that you specify and in the same direction with respect to the carrier. A sun-planet and a ring-planet gear are basic elements of a planetary gear set. For model details, see "Sun-Planet Gear Model" on page 1-530.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape \(>\) Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Sun-Planet Gear Model}

\section*{Ideal Gear Constraints and Gear Ratios}

Sun-Planet imposes one kinematic and one geometric constraint on the three connected axes:
\(r_{\mathrm{C}} \omega_{\mathrm{C}}=r_{\mathrm{S}} \omega_{\mathrm{S}}+r_{\mathrm{P}} \omega_{\mathrm{P}}, \quad r_{\mathrm{C}}=r_{\mathrm{P}}+r_{\mathrm{S}}\)
The planet-sun gear ratio \(g_{\mathrm{PS}}=r_{\mathrm{P}} / r_{\mathrm{S}}=N_{\mathrm{P}} / N_{\mathrm{S}}\). \(N\) is the number of teeth on each gear. In terms of this ratio, the key kinematic constraint is:
\(\omega_{\mathrm{S}} \quad=\quad-g_{\mathrm{PS}} \omega_{\mathrm{P}} \quad+\quad\left(1 \quad+\quad g_{\mathrm{PS}}\right) \omega_{\mathrm{C}}\)

The three degrees of freedom reduce to two independent degrees of freedom. The gear pair is \((1,2)=(\mathrm{S}, \mathrm{P})\).

Warning The planet-sun gear ratio \(g_{\text {PS }}\) must be strictly greater than one.

The torque transfer is:
\begin{tabular}{lllllll}
\(g_{\mathrm{PS}} \tau_{\mathrm{S}}\) & + & \(\tau_{\mathrm{P}}\) & - & \(\tau_{\text {loss }}\) & \(=\) & 0
\end{tabular}
with \(\tau_{\text {loss }}=0\) in the ideal case .

\section*{Nonideal Gear Constraints and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). See "Model Gears with Losses".

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l}
Rotational conserving port representing the \\
planet carrier
\end{tabular} \\
\hline P & \begin{tabular}{l}
Rotational conserving port representing the \\
planet gear
\end{tabular} \\
\hline S & \begin{tabular}{l}
Rotational conserving port representing the \\
sun gear
\end{tabular} \\
\hline H & \begin{tabular}{l}
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Ring (R) to sun (S) teeth ratio (NP/NS)}

Ratio \(g_{\text {RS }}\) of the ring gear wheel radius to the sun gear wheel radius. This gear ratio must be strictly greater than 1 . The default value is 2 .

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

\section*{Ordinary efficiency}

Torque transfer efficiency \(\eta_{\text {SP }}\) for sun-planet gear wheel pair meshing.

\section*{Sun-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the efficiency losses to zero when no power is transmitted. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Efficiency}

Array of component efficiencies used to construct a 1-D temperature-efficiency lookup table. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Sun-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Sun-carrier viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{S}}\) for the sun-carrier gear motion. The default is 0 .
From the drop-down list, choose units. The default is newton-meters/(radians/second) (\(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\)).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\author{
Real-Time Simulation
}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\section*{Simscape Blocks}

Compound Planetary Gear | Planet-Planet | Planetary Gear | Ring-Planet | Sun-Planet Bevel

\section*{Topics}
"Basic Motion, Torque, and Force Modeling"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" Introduced in R2011a

\section*{Sun-Planet Bevel}

Planetary gear set of carrier, beveled planet, and sun wheels with adjustable gear ratio, assembly orientation, and friction losses

\section*{Library}

Simscape / Driveline / Gears / Planetary Subcomponents

\section*{Description}

The Sun-Planet Bevel gear block represents a set of carrier, planet, and sun gear wheels. The planet is connected to and rotates with respect to the carrier. The planet and sun corotate with a fixed gear ratio. You control the direction of rotation by setting the assembly orientation, left or right. A sun-planet and a ring-planet gear are basic elements of a planetary gear set. For model details, see "Sun-Planet Bevel Gear Model" on page 1536.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Sun-Planet Bevel Gear Model}

\section*{Ideal Gear Constraints and Gear Ratios}

Sun-Planet Bevel imposes one kinematic and one geometric constraint on the three connected axes.
\[
\begin{aligned}
& r_{C} \omega_{C}=r_{S} \omega_{S} \pm r_{P} \omega_{P} \\
& r_{C}=r_{S} \pm r_{P}
\end{aligned}
\]

Where:
- \(r_{C}\) is the radius of the carrier gear.
- \(\omega_{C}\) is the angular velocity of the carrier gear.
- \(r_{S}\) is the radius of the sun gear.
- \(\omega_{S}\) is the angular velocity of the sun gear.
- \(r_{P}\) is the radius of the planet gear.
- \(\omega_{P}\) is the angular velocity of the planet gear.

The planet-sun gear ratio is defined as
\[
g_{P S}=\frac{r_{P}}{r_{S}}=\frac{N_{P}}{N_{S}}
\]
where:
- \(g_{P S}\) is the planet-sun gear ratio. As \(r_{P}>r_{S}, g_{P S}>1\).
- \(N_{P}\) is the number of teeth in the planet gear.
- \(N_{S}\) is the angular velocity of the sun gear.

In terms of this ratio, the key kinematic constraint is:
- \(\omega_{S}=g_{P S} \omega_{P}-\omega_{C}\) for a left-oriented bevel assembly
- \(\omega_{S}=g_{P S} \omega_{P}+\omega_{C}\) for a right-oriented bevel assembly

The three degrees of freedom reduce to two independent degrees of freedom. The gear pair is \((1,2)=(S, P)\).

Warning The planet-sun gear ratio, \(g_{P S}\), must be strictly greater than one.

The torque transfer is defined as
\[
\tau_{P}=\tau_{l o s s}-g_{P S} \tau_{S},
\]
where:
- \(\tau_{\text {loss }}\) is the torque loss.
- \(\tau_{s}\) is the torque for the sun gear.
- \(\tau_{p}\) is the torque for the planet gear.

For the ideal case, there is no torque loss, that is \(\tau_{\text {loss }}=0\). Then the torque transfer equation is \(\tau_{P}=g_{P S} \tau_{S}\).

\section*{Nonideal Gear Constraints and Losses}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). See "Model Gears with Losses".

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l}
Rotational conserving port representing the \\
gear carrier
\end{tabular} \\
\hline P & \begin{tabular}{l}
Rotational conserving port representing the \\
planet gear
\end{tabular} \\
\hline S & \begin{tabular}{l}
Rotational conserving port representing the \\
sun gear
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline H & \begin{tabular}{l}
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Planet (P) to sun (S) teeth ratio (NP/NS)}

Ratio \(g_{\text {PS }}\) of the planet gear wheel radius to the sun gear wheel radius. This gear ratio must be strictly greater than 1 . The default value is 2 .

\section*{Assembly orientation}

Relative orientation of sun and planet gears, controlling their corotation direction. Left or right orientation imply, respectively, that the gears corotate in the same or opposite direction.

The default is Left - Sun and planet gears rotate in same direction.

\section*{Meshing Losses}

Parameters for meshing and friction losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear teeth. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between gear wheel pairs is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

\section*{Ordinary efficiency}

Torque transfer efficiency \(\eta_{\text {SP }}\) for sun-planet gear wheel pair meshing.

\section*{Sun-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the efficiency losses to zero when no power is transmitted. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Efficiency}

Array of component efficiencies used to construct a 1-D temperature-efficiency lookup table. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.95 0.9 0.85].

\section*{Sun-carrier power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Sun-carrier viscous friction coefficient}

Viscous friction coefficient \(\mu_{\mathrm{S}}\) for the sun-carrier gear motion. The default is 0 .
From the drop-down list, choose units. The default is newton-meters/(radians/second) (\(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\)).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\author{
Real-Time Simulation
}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\section*{Simscape Blocks}

Differential | Planet-Planet | Planetary Gear | Ring-Planet | Sun-Planet | Sun-Planet Worm Gear

\section*{Topics}
"Basic Motion, Torque, and Force Modeling"
"Limited Slip Differential with Clutches"

\author{
"Custom Planetary Gear" \\ "Model Thermal Losses in Driveline Components" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" \\ \section*{Introduced in R2011a}
}

\section*{Sun-Planet Worm Gear}

Planetary gear set of carrier, worm planet, and sun wheels with adjustable gear ratio, worm thread type, and friction losses

\section*{Library}

Simscape / Driveline / Gears / Planetary Subcomponents

\section*{Description}

The Sun-Planet Worm Gear block represents a two-degree-of-freedom planetary gear built from carrier, sun, and planet gears. By type, the sun and planet gears are crossed helical spur gears arranged as a worm-gear transmission, in which the planet gear is a worm. Such transmissions are used in the Torsen type 1 differential. When transmitting power, the sun gear can be independently rotated by the worm (planet) gear, or by the carrier, or both.

You specify a fixed gear ratio, which is determined as the ratio of the worm angular velocity to the sun gear angular velocity. You control the direction by setting the worm thread type, left-hand or right-hand. Rotation of the right-hand worm in positive direction causes the sun gear to rotate in positive direction too. The positive directions of the sun gear and the carrier are the same.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Sun-Planet Worm Gear Model}

\section*{Model Variables}
\begin{tabular}{|l|l|}
\hline\(R_{\text {WG }}\) & \begin{tabular}{l}
Gear, or transmission, ratio determined as the ratio of the worm angular \\
velocity to the gear angular velocity. \\
The ratio is positive for the right-hand worm and negative for the left-hand \\
worm.
\end{tabular} \\
\hline\(\omega_{\mathrm{S}}\) & Angular velocity of the sun gear \\
\hline\(\omega_{\mathrm{P}}\) & Planet (that is, worm) angular velocity \\
\hline\(\omega_{\mathrm{C}}\) & Carrier angular velocity \\
\hline\(\omega_{\text {SC }}\) & Angular velocity of the sun with respect to the carrier \\
\hline\(\alpha\) & Normal pressure angle \\
\hline\(\lambda\) & Worm lead angle \\
\hline\(L\) & Worm lead \\
\hline\(d\) & Worm pitch diameter \\
\hline\(\tau_{\mathrm{S}}\) & Torque applied to the sun shaft \\
\hline\(\tau_{\mathrm{P}}\) & Torque applied to the planet shaft \\
\hline\(\tau_{\mathrm{C}}\) & Torque applied to the carrier shaft \\
\hline\(\tau_{\text {loss }}\) & \begin{tabular}{l}
Torque loss due to meshing friction. The loss depends on the device efficiency \\
and the power flow direction. \\
To avoid abrupt change of the friction torque at \(\omega_{\mathrm{S}}=0\), the friction torque is \\
introduced via the hyperbolic function.
\end{tabular} \\
\hline\(\tau_{\text {instfr }}\) & \begin{tabular}{l}
Instantaneous value of the friction torque added to the model to simulate \\
friction losses
\end{tabular} \\
\hline\(\tau_{\text {fr }}\) & Steady-state value of the friction torque \\
\hline\(k\) & Friction coefficient \\
\hline\(\eta_{\text {WG }}\) & Efficiency for worm-gear power transfer \\
\hline\(\eta_{\text {GW }}\) & Efficiency for gear-worm power transfer \\
\hline\(p_{\text {th }}\) & Power threshold \\
\hline\(\mu_{\text {SC }}\) & Sun-carrier viscous friction coefficient \\
\hline
\end{tabular}

\section*{\begin{tabular}{l|l}
\(\mu_{\text {WC }}\) & Worm-carrier viscous friction coefficient
\end{tabular}}

\section*{Ideal Gear Constraints and Gear Ratio}

Sun-planet worm gear imposes one kinematic constraint on the three connected axes:
```

$\omega_{\mathrm{S}} \quad=\quad \omega_{\mathrm{P}} / R_{\mathrm{WG}} \quad+\quad \omega_{\mathrm{C}}$

```

The gear has two independent degrees of freedom. The gear pair is \((1,2)=(\mathrm{S}, \mathrm{P})\).
The torque transfer is:
\begin{tabular}{lllllll}
\(R_{\text {WG }} \tau_{\mathrm{P}}\) & + & \(\tau_{\mathrm{S}}\) & - & \(\tau_{\text {loss }}\) & & \(=\) \\
\(\tau_{\mathrm{C}}\) & & & & - & & 0
\end{tabular},
with \(\tau_{\text {loss }}=0\) in the ideal case.

\section*{Nonideal Gear Constraints}

For general considerations on nonideal gear modeling, see "Model Gears with Losses".
In a nonideal gear, the angular velocity and geometric constraints are unchanged. But the transferred torque and power are reduced by:
- Coulomb friction between thread surfaces on W and G, characterized by friction coefficient \(k\) or constant efficiencies [\(\eta_{\text {WG }}, \eta_{\mathrm{GW}}\)]
- Viscous coupling of driveshafts with bearings, parametrized by viscous friction coefficients \(\mu_{\mathrm{SC}}\) and \(\mu_{\mathrm{Wc}}\)

Because the transmission incorporates a worm gear, the efficiencies are different for the direct and reverse power transfer. The following table shows the value of the efficiency for all combinations of the power transfer.
\begin{tabular}{llll}
Driving shaft & \begin{tabular}{l}
Driven shaft \\
Planet
\end{tabular} & Sun & Carrier \\
Planet & \(\mathrm{n} / \mathrm{a}\) & \(\eta_{\mathrm{WG}}\) & \(\eta_{\mathrm{WG}}\) \\
Sun & \(\eta_{\mathrm{GW}}\) & \(\mathrm{n} / \mathrm{a}\) & No loss
\end{tabular}
Carrier \(\quad \eta_{\mathrm{GW}} \quad\) No loss \(\quad \mathrm{n} / \mathrm{a}\)

\section*{Geometric Surface Contact Friction}

In the contact friction case, \(\eta_{\mathrm{WG}}\) and \(\eta_{\mathrm{GW}}\) are determined by:
- The worm-gear threading geometry, specified by lead angle \(\lambda\) and normal pressure angle \(\alpha\).
- The surface contact friction coefficient \(k\).
\begin{tabular}{lllllll}
\(\eta_{\mathrm{WG}}\) & \(=\) & \((\cos \alpha\) & - & \(k \cdot \tan \lambda) /(\cos \alpha\) & + & \(k / \tan \lambda)\) \\
\(\eta_{\mathrm{GW}}\) & \(=\) & \((\cos \alpha\) & - & \(k / \tan \lambda) /(\cos \alpha\) & + & \(k \cdot \tan \alpha)\)
\end{tabular}

\section*{Constant Efficiencies}

In the constant efficiency case, you specify \(\eta_{\mathrm{WG}}\) and \(\eta_{\mathrm{GW}}\), independently of geometric details.

\section*{Self-Locking and Negative Efficiency}

If you set efficiency for the reverse power flow to a negative value, the train exhibits selflocking. Power cannot be transmitted from sun gear to worm and from carrier to worm unless some torque is applied to the worm to release the train. In this case, the absolute value of the efficiency specifies the ratio at which the train is released. The smaller the train lead angle, the smaller the reverse efficiency.

\section*{Meshing Efficiency}

The efficiencies \(\eta\) of meshing between worm and gear are fully active only if the transmitted power is greater than the power threshold.

If the power is less than the threshold, the actual efficiency is automatically regularized to unity at zero velocity.

\section*{Viscous Friction Force}

The viscous friction coefficients of the worm-carrier and sun-carrier bearings control the viscous friction torque experienced by the carrier from lubricated, nonideal gear threads. For details, see "Nonideal Gear Constraints" on page 1-545.

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline C & \begin{tabular}{l}
Rotational conserving port representing the \\
gear carrier
\end{tabular} \\
\hline W & \begin{tabular}{l}
Rotational conserving port representing the \\
worm gear
\end{tabular} \\
\hline S & \begin{tabular}{l}
Rotational conserving port representing the \\
sun gear
\end{tabular} \\
\hline H & \begin{tabular}{l}
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Gear ratio}

Gear or transmission ratio \(R_{\text {WG }}\) determined as the ratio of the worm angular velocity to the gear angular velocity. The default is 25 .

\section*{Worm thread type}

Choose the directional sense of gear rotation corresponding to positive worm rotation. The default is Right - hand. If you select Left-hand, rotation of the worm in the generally-assigned positive direction results in the gear rotation in negative direction.

\section*{Meshing Losses}

Parameters for meshing and friction losses vary with the block variant chosen-one with a thermal port for thermal modeling and one without it.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear threads. The default is No meshing losses.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque and force between worm and gear is reduced by friction. If you select this option, the panel expands.

\section*{Constant Efficiency}

\section*{Friction parametrization}

Select how to characterize the friction between gear threads. The default is Friction coefficient and geometrical parameters.
- Friction coefficient and geometrical parameters - Friction is determined by contact friction between surfaces.

\section*{Normal pressure angle}

The thread pressure angle \(\alpha\) in the normal plane. Must be greater than zero and less than 90 degrees. The default is 17.5 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Lead angle}

Thread helix angle \(\lambda=\arctan [L /(\Pi d)]\). \(L\) is the worm lead, \(d\) is the worm pitch diameter. Must be greater than zero. The default is 20 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Friction coefficient}

Dimensionless coefficient of normal friction in the thread. Must be greater than zero. The default is 0.08 .
- Efficiencies - Friction is determined by constant efficiencies \(0<\eta<\) 1. If you select this option, the panel changes from its default.

\section*{Efficiencies}

\section*{Worm-gear efficiency}

Efficiency \(\eta_{\text {WG }}\) of the power transfer from worm to gear.

\section*{Gear-worm efficiency}

Efficiency \(\eta_{\mathrm{GW}}\) of the power transfer from gear to worm.

\section*{Power threshold}

Power threshold above which the full efficiency factor is in effect. Below this value, a hyperbolic tangent function smooths the efficiency factor, lowering the efficiency losses to zero when no power is transmitted. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Worm-gear efficiency}

Array of component efficiencies with the worm as the driver-that is, with power flowing from the worm to the gear. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.75 0.7 0.65].

\section*{Gear-worm efficiency}

Array of component efficiencies with the gear as the driver-that is, with power flowing from the gear to the worm. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.5 0.45 0.4].

\section*{Power threshold}

Absolute value of the angular velocity above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Worm-carrier and sun-carrier viscous friction coefficients}

Vector of viscous friction coefficients [\(\mu_{\mathrm{WC}} \mu_{\mathrm{SC}}\)], for the worm-carrier and sun-carrier shafts, respectively. The default is [0 0].

From the drop-down list, choose units. The default is newton-meters/(radians/second) (\(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\)).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Meshing Losses > Friction model parameter default setting, No meshing losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\author{
Simscape Blocks \\ Leadscrew | Sun-Planet | Sun-Planet Bevel | Worm Gear
}

\section*{Topics}
"Basic Motion, Torque, and Force Modeling"
"Torsen Differential"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

\section*{Introduced in R2011a}

\section*{Synchronizer}

Cone clutch, dog clutch, and translational detent assembled to provide smooth gear engagement Library: Simscape / Driveline / Clutches

\section*{Description}

The block represents a synchronizer that contains a dog clutch, a cone clutch, and a translational detent. The shift linkage first translates to engage the cone clutch. Frictional torque causes the shift linkage and cone clutch shaft to rotate at equal speed. When the force acting on the shift linkage exceeds the detent force, the dog clutch can engage.

The schematic illustrates a synchronizer in the disengaged state. In this state, the ring (R) and hub (H) shafts can spin independently at different speeds. To synchronize ring and hub shaft speeds, the shift linkage (S) translates toward the hub shaft to engage the cone clutch. The friction surfaces of the cone clutch produce a frictional torque that equalizes the rotational speeds of the ring and hub shafts. The dog clutch teeth (T) can engage
when the translational force acting on the shift linkage exceeds the peak detent force. The peak detent force should allow sufficient time and normal force to equalize ring and hub shaft speeds so that the dog clutch can engage.

The model implements the Dog Clutch, Cone Clutch, and Translational Detent blocks. Refer to each block reference page for more information on the corresponding block function. You can use a similar approach to model customized versions of the synchronizer. One example is the Transmission (Detailed) subsystem in the model sdl_vehicle_manual_transmission.

Connections R and H are mechanical rotational conserving ports that represent the ring \((\mathrm{R})\) and hub (H), respectively. Connection S is a mechanical translational conserving port that represents the ring shifter handle.

Connections X1 and X2 are physical signal outputs that report the shift linkage positions of the dog clutch and cone clutch, respectively. The shift linkage positions are zero when the clutch is fully disengaged. When the dog clutch is fully engaged, the dog clutch shift linkage position has a magnitude equal to the sum of the dog clutch ring-hub gap and the tooth height. When cone clutch is fully engaged, the cone clutch shift linkage position has a magnitude equal to the cone clutch ring-hub gap.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, in the Clutch settings, select a temperature-dependent setting tor the Friction model parameter. Specify the associated thermal parameters for the component.

\section*{Assumptions and Limitations}
- The model does not account for inertia effects. You can add a Simscape Inertia block at each port to add inertia to the synchronizer model.

\section*{Ports}

\section*{Output}

\section*{X1 - Dog clutch translation}
physical signal
Physical signal output port that measures the magnitude of the dog clutch translation.

\section*{X2 - Cone clutch translation}
physical signal
Physical signal output port that measures the magnitude of the cone clutch translation.

\section*{Conserving}

\section*{H - Clutch hub}
mechanical rotational
Mechanical rotational conserving port associated with the clutch hub

\section*{R - Clutch ring \\ mechanical rotational}

Mechanical rotational conserving port associated with the clutch ring.

\section*{S - Shift linkage \\ mechanical rotational}

Mechanical rotational conserving port associated with shift linkage.

\section*{T - Heat flow}
thermal
Thermal conserving port associated with heat flow.

\section*{Dependencies}

This port is visible only when, in the Friction settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients.

\section*{Parameters}

The table shows how the specified options for parameters in both the Cone Clutch and Dog Clutch settings affect the visibility of:
- Parameters in the Cone Clutch, Dog Clutch, and Initial Conditions settings
- Thermal Port settings
- Thermal port T

To learn how to read the table, see "Parameter Dependencies" on page B-2.

Synchronizer Block Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|}
\hline Settings & \multicolumn{4}{|c|}{Parameters and Options} \\
\hline \multirow[t]{9}{*}{Cone Clutch} & \multicolumn{4}{|c|}{Contact surface maximum diameter} \\
\hline & \multicolumn{4}{|c|}{Contact surface minimum diameter} \\
\hline & \multicolumn{4}{|c|}{Cone half angle} \\
\hline & \multicolumn{4}{|c|}{Friction model} \\
\hline & Fixed kinetic friction coefficient & Velocity-dependent kinetic friction coefficient & Temperat uredependen t friction coeffici ents & \begin{tabular}{l}
Temperat ure and velocity \\
dependen t \\
friction coeffici ents
\end{tabular} \\
\hline & - & - & \begin{tabular}{l}
Exposes: \\
- Conserv ing port T \\
- Therm al Port settings
\end{tabular} & \begin{tabular}{l}
Exposes: \\
- Conserv ing port T \\
- Therm al Port settings
\end{tabular} \\
\hline & - & Relative velocity vector & & Relative velocity vector \\
\hline & - & - & Temperat ure vector & Temperat ure vector \\
\hline & Static friction coefficient & Static friction coefficient vector & ```
Static friction coefficient vector
``` & Static friction coefficient matrix \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Settings & \multicolumn{6}{|c|}{Parameters and Options} \\
\hline \multirow[t]{5}{*}{} & \multicolumn{2}{|l|}{Kinetic friction coefficient} & \multicolumn{2}{|l|}{Kinetic friction coefficient vector} & Kinetic friction coefficient vector & Kinetic friction coefficient matrix \\
\hline & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{Friction coefficient interpolation method} & ```
Friction
coefficient
interpolat
    ion
    method
``` & Friction
coefficient
interpolat
ion
method \\
\hline & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{Friction coefficient extrapolation method} & & Friction coefficient extrapolat ion \\
\hline & \multicolumn{2}{|l|}{Velocity tolerance} & \multicolumn{2}{|l|}{Velocity tolerance} & Velocity tolerance & Velocity tolerance \\
\hline & \multicolumn{2}{|l|}{Threshold force} & \multicolumn{2}{|l|}{Threshold force} & Threshold force & Threshold force \\
\hline \multirow[t]{4}{*}{Dog Clutch} & \multicolumn{2}{|l|}{Torque transmission model} & \multicolumn{2}{|l|}{Torque transmission model} & - & \\
\hline & ```
Friction
 clutch
approxim
 ation -
Suitable
 for HIL
 and
lineariz
 ation
``` & Dynamic with backlash & Friction clutch approxim ation Suitable for HIL and lineariz ation & Dynamic with backlash & - & - \\
\hline & - & - & - & - & Temperat ure vector & Temperat ure vector \\
\hline & Maximum transmitte d torque & - & Maximum transmitte d torque & - & Maximum transmitte d torque vector & Maximum transmitte d torque vector \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Settings & \multicolumn{6}{|c|}{Parameters and Options} \\
\hline \multirow[t]{8}{*}{} & - & - & - & - & \[
\begin{array}{|c|}
\hline \text { Interpolat } \\
\text { ion } \\
\text { method }
\end{array}
\] & Interpolat ion method \\
\hline & - & - & - & - & Extrapolat ion method & Extrapolat ion method \\
\hline & Clutch teeth mean radius \\
\hline & - & Number of teeth & - & Number of teeth & & \\
\hline & & Rotational backlash & & Rotational backlash & & \\
\hline & - & Torsional stiffness & - & Torsional stiffness & & \\
\hline & - & Torsional damping & - & Torsional damping & & \\
\hline & - & Toothtooth friction coefficient & - & Toothtooth friction coefficient & & \\
\hline \multirow[t]{2}{*}{Initial Condition S} & Initial state \\
\hline & Dog clutch initial shift linkage position \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Settings & \multicolumn{7}{|c|}{ Parameters and Options } \\
\hline & \begin{tabular}{c} 
Cone \\
clutch \\
initial \\
shift \\
linkage \\
position
\end{tabular} & \begin{tabular}{c} 
Cone \\
clutch \\
initial \\
shift \\
linkage \\
position
\end{tabular} & \begin{tabular}{c} 
Cone \\
clutch \\
initial \\
shift \\
linkage \\
position
\end{tabular} & \begin{tabular}{c} 
Cone \\
clutch \\
initial \\
shift \\
linkage \\
position
\end{tabular} & \begin{tabular}{c} 
Cone \\
clutch \\
initial \\
shift \\
linkage \\
position
\end{tabular} & \begin{tabular}{c} 
Cone \\
clutch \\
initial \\
shift \\
linkage \\
position
\end{tabular} \\
\cline { 2 - 7 } & - & \begin{tabular}{c} 
Initial dog \\
clutch \\
ring-hub \\
offset \\
angle
\end{tabular} & - & \begin{tabular}{c} 
Initial dog \\
clutch \\
ring-hub \\
offset \\
angle
\end{tabular} & - & - \\
\hline \multirow{8}{*}{\begin{tabular}{c} 
Thermal \\
Port
\end{tabular}} & - & - & - & - & \begin{tabular}{c} 
Thermal \\
mass
\end{tabular} & \begin{tabular}{c} 
Thermal \\
mass
\end{tabular} \\
\cline { 2 - 7 } & - & - & - & - & \begin{tabular}{c} 
Initial \\
temperatu \\
re
\end{tabular} & \begin{tabular}{c} 
Initial \\
temperatu \\
re
\end{tabular} \\
\hline
\end{tabular}

\section*{Cone Clutch}

\section*{Contact surface maximum diameter - Outer diameter}

150 mm (default) | positive scalar
Outer conical diameter \(d_{0}\).

\section*{Contact surface minimum diameter - Inner diameter}

100 mm (default) | positive scalar
Inner conical diameter \(d_{i}\).

\section*{Cone half angle - Cone half angle}

12 deg (default) | positive scalar
Half opening angle \(\alpha\) of the cone geometry.

\section*{Friction model - Friction model \\ Fixed kinetic friction coefficient (default)|Velocity-dependent kinetic \\ friction coefficient|Temperature-dependent friction coefficients| \\ Temperature and velocity-dependent friction coefficients}

Parameterization method to model the kinetic friction coefficient. The options and default values for this parameter depend on the friction model that you select for the block. The options are:
- Fixed kinetic friction coefficient - Provide a fixed value for the kinetic friction coefficient.
- Velocity-dependent kinetic friction coefficient - Define the kinetic friction coefficient by one-dimensional table lookup based on the relative angular velocity between disks.
- Temperature-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature.
- Temperature and velocity-dependent friction coefficients - Define the kinetic friction coefficient by table lookup based on the temperature and the relative angular velocity between disks.

\section*{Dependencies}

The friction model setting affects the visibility of other parameters, settings, and ports.
For more information, see Synchronizer Block Parameter Dependencies.

\section*{Relative velocity vector - Relative velocity}
[0, 100, 1000] rad/s (default)|vector
Input values for the relative velocity as a vector. The values in the vector must increase from left to right. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension.

\section*{Dependencies}

This parameter is visible only when the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature and velocitydependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Temperature vector - Temperature}
[280, 300, 320] K (default) | increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two
values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

\section*{Dependencies}

This parameter is visible only when the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Static friction coefficient - Static friction coefficient 0.35 (default) | scalar}

Static or peak value of the friction coefficient. The static friction coefficient must be greater than the kinetic friction coefficient.

\section*{Dependencies}
this parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Static friction coefficient vector - Static friction coefficient [.4, .38, .36] (default)| vector}

Static, or peak, values of the friction coefficient as a vector. The vector must have the same number of elements as the temperature vector. Each value must be greater than the value of the corresponding element in the kinetic friction coefficient vector.

\section*{Dependencies}

This parameter is visible only when the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Kinetic friction coefficient - Kinetic friction coefficient}
0.3 (default) | positve scalar

The kinetic, or Coulomb, friction coefficient. The coefficient must be greater than zero.

\section*{Dependencies}

This parameter is visible only when the Friction model parameter is set to Fixed kinetic friction coefficient.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Kinetic friction coefficient vector - Kinetic friction coefficient [.3, .22, .19] (default)|[.3, .28, .25]|vector}

Output values for kinetic friction coefficient as a vector. All values must be greater than zero.

If the Friction model parameter is set to
- Velocity-dependent kinetic friction coefficient - The vector must have same number of elements as relative velocity vector.
- Temperature-dependent friction coefficients - The vector must have the same number of elements as the temperature vector.

\section*{Dependencies}

This parameter is visible only when the Friction model parameter is set to Velocitydependent kinetic friction coefficient or Temperature-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Kinetic friction coefficient matrix - Kinetic friction coefficient [.34, .32, .3; .3, . \(28, .25\); . 25, .2, .15] (default)|matrix}

Output values for kinetic friction coefficient as a matrix. All the values must be greater than zero. The size of the matrix must equal the size of the matrix that is the result of the temperature vector \(\times\) the kinetic friction coefficient relative velocity vector.

\section*{Dependencies}

This parameter is visible only when the Friction model parameter is set to Temperature and velocity-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.
Friction coefficient interpolation method - Interpolation method Linear (default)|Smooth

Interpolation method for approximating the output value when the input value is between two consecutive grid points:
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is visible only when, in the Cone Clutch settings, the Friction model parameter is set to Velocity-dependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Friction coefficient extrapolation method - Extrapolation method Linear (default) | Nearest | Error}

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is visible only when, in the Cone Clutch settings, the Friction model parameter is set to Velocity-dependent kinetic friction coefficient, Temperature-dependent friction coefficients, or Temperature and velocity-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Velocity tolerance - Relative velocity locking threshold} \(0.001 \mathrm{rad} / \mathrm{s}\) (default) | scalar

Relative velocity below which the two surfaces can lock. The surfaces lock if the torque is less than the product of the effective radius, the static friction coefficient, and the applied normal force.

\section*{Threshold force - Normal contact force threshold 1 N (default) | scalar}

The normal force is applied only if the amount of force exceeds the value of the Threshold force parameter. Forces below the Threshold force are not applied so there is no transmitted frictional torque.

\section*{Dog Clutch}

The methods that are available for parameterizing the torque transmission depend whether the friction model is temperature-dependent.

The friction model is determined, in the Cone Clutch settings, by the Friction model parameter setting:
- Fixed kinetic friction coefficient - Temperature independent
- Velocity-dependent kinetic friction coefficient-Temperature independent
- Temperature-dependent friction coefficients - Temperature dependent
- Temperature and velocity-dependent friction coefficients Temperature dependent

For a temperature-independent model, parameterize the block using one of the options for the Torque Transmission Model parameter.

\section*{Torque transmission model - Torque transmission model}

Friction clutch approximation - Suitable for HIL and linearization (default)|Dynamic with backlash

Computational framework for modeling the dynamic behavior of the dog clutch:
- Friction clutch approximation - Suitable for HIL and linearization - Model clutch engagement as a friction phenomenon between the ring and the hub. This model, based on the Fundamental Friction Clutch block, provides a computationally efficient approximation of the dog clutch.
- Dynamic with backlash - Model clutch engagement in detail, accounting for such phenomena as backlash, torsional compliance, and contact forces between ring and hub teeth.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent friction coefficients.

The visibility of related parameters in the Dog Clutch and Initial Conditions settings is affected by the option that you select for this parameter.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Temperature vector - Temperature}
[280, 300, 320] K (default) | increasing vector
Input values for the temperature as a vector. The minimum number of values depends on the interpolation method that you select. For linear interpolation, provide at least two values per dimension. For smooth interpolation, provide at least three values per dimension. The values in the vector must increase from left to right.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Maximum transmitted torque - Maximum transmitted torque} 1000 N*m (default) | positive scalar

Largest torque that the clutch can transmit, corresponding to a nonslip engaged configuration. If the torque transmitted between the ring and the hub exceeds this value, the two components begin to slip with respect to each other. This torque determines the static friction limit in the friction clutch approximation

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in Dog Clutch settings, the Torque transmission model parameter is set to Friction clutch approximation - Suitable for HIL and linearization.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Maximum transmitted torque vector - Maximum transmitted torque [1000, 1050, 1000] N*m (default) | vector}

Largest torque that the clutch can transmit, corresponding to a nonslip engaged configuration, specified as a vector. If the torque transmitted between the ring and the hub exceeds this value, the two components begin to slip with respect to each other. This torque determines the static friction limit in the friction clutch approximation. The vector has the same number of elements as the temperature vector.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent kinetic friction coefficient or Temperature and velocity-dependent kinetic friction coefficient.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Interpolation method - Interpolation method Linear (default) | Smooth}

Interpolation method for approximating the output value when the input value is between two consecutive grid points:
- Linear - Select this option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent kinetic friction coefficient or Temperature and velocity-dependent kinetic friction coefficient.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Extrapolation method - Extrapolation method \\ Linear (default) | Nearest | Error}

Extrapolation method for determining the output value when the input value is outside the range specified in the argument list:
- Linear - Select this option to produce a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Select this option to produce an extrapolation that does not go above the highest point in the data or below the lowest point in the data.
- Error - Select this option to avoid going into the extrapolation mode when you want your data to be within the table range. If the input signal is outside the range of the table, the simulation stops and generates an error.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent kinetic friction coefficient or Temperature and velocity-dependent kinetic friction coefficient.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Clutch teeth mean radius - Clutch teeth mean radius \\ 50 mm (default) | positive scalar}

Distance from the ring or hub center to the corresponding tooth center. The mean tooth radius determines the normal contact forces between ring and hub teeth given the transmission torque between the two components. The value must be greater than zero.

\section*{Number of teeth - Number of ring or hub teeth}

6 (default) | positive nonzero scalar integer

Total number of teeth in the ring or the hub. The two components have equal tooth numbers. The value must be greater than or equal to one.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Rotational backlash - Rotational backlash}

10 deg (default) | positive scalar
Allowable angular motion, or play, between the ring and hub teeth in the engaged clutch configuration. The value must be greater than zero.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Torsional stiffness - Torsional stiffness \\ \(10 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} /\) rad (default) | positive scalar}

Linear torsional stiffness coefficient at the contact interface between the ring and hub teeth. This coefficient characterizes the restoring component of the contact force between the two sets of teeth. Greater stiffness values correspond to greater contact forces. The value must be greater than zero. The default value is \(10 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}\).

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Torsional damping - Torsional damping \(100 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default) | positive scalar}

Linear torsional damping coefficient at the contact interface between the ring and hub teeth. This coefficient characterizes the dissipative component of the contact force between the two sets of teeth. Greater damping values correspond to greater energy dissipation during contact. The value must be greater than zero.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Tooth-tooth friction coefficient - Tooth-tooth contact kinetic friction coefficient}
0.05 (default) | positive scalar

Kinetic friction coefficient at the contact interface between ring and hub teeth. This coefficient characterizes the dissipative force that resists shift linkage motion due to tooth-tooth contact during clutch engagement/disengagement.

Greater coefficient values correspond to greater energy dissipation during shift linkage motion. The value must be greater than zero.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocitydependent kinetic friction coefficient and, in the Dog Clutch settings, the Torque transmission model parameter is set to Dynamic with backlash.

For more information, see Synchronizer Block Parameter Dependencies.

\section*{Detent}

Peak force - Peak shear force
500 N (default) | nonnegative scalar
Peak shear force of the detent.

\section*{Notch width - Notch width \\ 3 mm (default) | nonnegative scalar}

Width of the region where the detent exhibits shear force.

\section*{Viscous friction coefficient - Viscous friction coefficient \(0.1 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\) (default) | nonnegative scalar}

Viscous friction coefficient at the contact surface of the detent. The value must be greater than or equal to zero.

Friction to peak force ratio - Friction to peak force ratio 0.01 (default) | nonnegative scalar

Ratio of the kinetic friction to the peak shear force of the detent. The parameter is used to set the value of the kinetic friction. The parameter must be greater than or equal to zero.

\section*{Friction velocity threshold - Kinetic friction velocity threshold} \(0.05 \mathrm{~m} / \mathrm{s}\) (default)

Velocity required for peak kinetic friction at the contact surface of the detent. The parameter ensures the force is continuous when the travel direction changes, increasing the numerical stability of the simulation. The parameter must be greater than zero. The default value is \(0.05 \mathrm{~m} / \mathrm{s}\).

\section*{Shift Linkage}

Shift linkage travel direction - Engagement condition travel direction Positive shift linkage displacement engages clutch (default)|Negative shift linkage displacement engages clutch

Direction the shift linkage must travel in to engage the clutch. Choices include positive and negative displacements.

\section*{Maximum engagement speed - Engagement speed upper velocity threshold} inf (default) | positive scalar

Relative angular velocity between the ring and the hub above which the clutch cannot engage. The value is specific to the specific gearbox or transmission. Minimizing the value helps avoid high dynamic impact during engagement. The value must be greater than zero.

\section*{Tooth overlap to engage - Tooth overlap engagement threshold 3 mm (default) | positive scalar}

Overlap length between ring and hub teeth along the common longitudinal axis above which the clutch can engage. The clutch remains disengaged until the tooth overlap by at least this length. The value must be greater than zero.

\section*{Tooth height - Tooth height}

10 mm (default) | positive scalar
Distance between the base and crest of a tooth. Ring and hub teeth share the same height. The tooth height and the ring-hub clearance when fully disengaged determine the maximum travel span of the shift linkage. The value must be greater than zero.

\section*{Ring-hub clearance when disengaged - Ring-hub clearance when disengaged 3 mm (default) | positive scalar}

Maximum open gap between the ring and hub tooth crests along the shift linkage translation axis. This gap corresponds to the fully disengaged clutch state. The tooth height and the ring-hub clearance when fully disengaged determine the maximum travel span of the shift linkage. The value must be greater than zero.

\section*{Hard stop at back of shift linkage - Hard stop model} On (default) | Off

Hard stop that prevents the shift linkage from traveling beyond the fully disengaged position:
- On - Hard stop when fully disengaged.
- Off - No hard stop when fully disengaged.

Dog clutch ring stop stiffness - Dog clutch ring stop stiffness 10e5 N/m (default) | positive scalar

Stiffness of the hard stops on both sides of the dog clutch ring. The model assumes the ring and stops behave elastically. Contact deformation is proportional to the applied force and the reciprocal of the contact stiffness. The value of the stiffness must be assigned with reference to the parameter Tooth overlap to engage. Too low a stiffness could cause the deformation to exceed the required overlap and initiate a false engagement. The parameter must be greater than zero.

\section*{Cone clutch ring stop stiffness - Cone clutch ring stop stiffness} 10e5 N/m (default) | positive scalar

Stiffness of the hard stops on both sides of the cone clutch ring. The model assumes the ring and stops behave elastically. Contact deformation is proportional to the applied force and the reciprocal of the contact stiffness.

\section*{Dog clutch ring stop damping - Dog clutch ring stop damping} le3 N/(m/s) (default) | nonegative scalar

Translational contact damping between the dog clutch ring and the hub. The value of the damping is inversely proportional to the number of oscillations that occur after impact. The parameter must be greater than zero.

\section*{Cone clutch ring stop damping - Cone clutch ring stop damping 1e3 N/(m/s) (default) | nonegative scalar}

Translational contact damping between the cone clutch ring and the hub. The value of damping is inversely proportional to the number of oscillations that occur after impact. The parameter must be greater than zero.

\section*{Shift linkage viscous friction coefficient - Shift linkage viscous friction coefficient}
\(100 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\) (default) | positive scalar
Viscous friction coefficient for the relative translational motion between the hub and the ring. The value of the parameter depends on lubrication state and quality of contacting surfaces. The coefficient must be greater than or equal to zero.

\section*{Initial Conditions}

\section*{Initial state - Initial clutch state}

All clutches unlocked (default)|Cone clutch locked|All clutches locked
Beginning configuration of cone and dog clutches:
- All clutches unlocked - Cone and dog clutches transmit zero torque between the ring and hub shafts.
- Cone clutch locked - Cone clutch transmits torque between the ring and hub shafts.
- All clutches locked - Cone and dog clutches transmit torque between the ring and hub shafts.

Dog clutch initial shift linkage position - Dog clutch initial shift linkage position
0 mm (default) | scalar
Initial position of the shift linkage section that attaches to the dog clutch. The value of the parameter has these restrictions:
\begin{tabular}{|l|l|l|}
\hline Linkage Travel Direction & Dog Clutch State & Parameter Restriction \\
\hline \begin{tabular}{l} 
Positive shift \\
linkage displacement \\
engages clutch
\end{tabular} & Initially engaged & \begin{tabular}{l} 
Parameter must be greater \\
than the sum of parameters \\
Ring-hub clearance when \\
dog clutch disengaged \\
and Tooth overlap to \\
engage
\end{tabular} \\
\cline { 2 - 5 } & & Initially disengaged \\
\hline \begin{tabular}{l} 
Negative shift \\
linkage displacement \\
engages clutch
\end{tabular} & Initially engaged & \begin{tabular}{l} 
Ring-hub clearance when \\
dog clutch disengaged \\
and Tooth overlap to \\
engage
\end{tabular} \\
& & \begin{tabular}{l} 
Negative of the parameter \\
must be greater than the \\
sum of parameters Ring- \\
hub clearance when dog \\
clutch disengaged and \\
Tooth overlap to engage
\end{tabular} \\
\hline
\end{tabular}

\section*{Cone clutch initial shift linkage position - Cone clutch initial shift linkage position}

0 mm (default) | scalar

Initial position of the shift linkage section that attaches to the cone clutch. The value of the parameter has these restrictions:
\begin{tabular}{|l|l|l|}
\hline Linkage Travel Direction & Dog Clutch State & Parameter Restriction \\
\hline \begin{tabular}{l} 
Positive shift \\
linkage displacement \\
engages clutch
\end{tabular} & Initially engaged & \begin{tabular}{l} 
Parameter must be greater \\
than the value of Ring-hub \\
clearance when cone \\
clutch disengaged
\end{tabular} \\
\cline { 2 - 3 } & & Initially disengaged \\
\hline \begin{tabular}{l} 
Negative shift \\
linkage displacement \\
engages clutch
\end{tabular} & \begin{tabular}{l} 
Parameter must be smaller \\
than the value of Ring-hub \\
clearance when cone \\
clutch disengaged
\end{tabular} \\
\hline & & \begin{tabular}{l} 
Negative of the parameter \\
must be greater than the \\
value of Ring-hub \\
clearance when dog cone \\
disengaged
\end{tabular} \\
\cline { 2 - 4 } & Initially disengaged & \begin{tabular}{l} 
Negative of the parameter \\
must be smaller than the \\
value of Ring-hub \\
clearance when dog cone \\
disengaged
\end{tabular} \\
\hline
\end{tabular}

\section*{Initial dog clutch ring-hub offset angle - Initial dog clutch ring-hub offset angle}

\section*{0 deg (default) | scalar}

Rotation angle between the ring and the hub at simulation time zero. This angle determines whether the ring and hub teeth can interlock, and hence whether the clutch can engage. The initial offset angle must satisfy these conditions:
- If the clutch initial state is disengaged, the initial offset angle must fall in the range
\[
-\frac{180^{\circ}}{N} \leq \phi_{0} \leq+\frac{180^{\circ}}{N}
\]
where \(N\) is the number of teeth present in the ring or the hub. The two components contain the same number of teeth.
- If the clutch initial state is engaged, the initial offset angle must fall in the range
\[
-\frac{\delta}{2} \leq \phi_{0} \leq+\frac{\delta}{2},
\]
where \(\delta\) is the backlash angle between the ring and hub teeth.

\section*{Dependencies}

This parameter is visible only if both of these conditions are met:
- In the Cone Clutch settings, the Friction model parameter is set to Fixed kinetic friction coefficient or Velocity-dependent kinetic friction coefficient.
- In the Dog Clutch settings, the Torque transmission model is set to Dynamic with backlash.

\section*{Thermal Port}

Thermal Port settings are visible only when, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Synchronizer Block Parameter Dependencies.

\section*{Thermal mass - Thermal mass}

50 kJ/K (default) | scalar
Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Synchronizer Block Parameter Dependencies.

\section*{Initial temperature - Initial temperature \\ 300 K (default) | scalar}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses.

\section*{Dependencies}

This parameter is visible only if, in the Cone Clutch settings, the Friction model parameter is set to Temperature-dependent friction coefficients or Temperature and velocity-dependent friction coefficients. For more information, see Synchronizer Block Parameter Dependencies.

\section*{More About}

\section*{Linearization}

To optimize your model for linearization, use the Dog Clutch > Torque transmission model parameter default setting, Friction clutch approximation - Suitable for HIL and linearization.

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Dog Clutch > Torque transmission model parameter default setting, Friction clutch approximation - Suitable for HIL and linearization.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Cone Clutch | Dog Clutch | Double-Sided Synchronizer | Translational Detent

\section*{Topics}
"Vehicle with Manual Transmission"
"Model Thermal Losses in Driveline Components"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" Introduced in R2012b

\section*{Tire (Friction Parameterized)}

Tire with friction parameterized in terms of static and kinetic coefficients Library: \(\quad\) Simscape / Driveline / Tires \& Vehicles


\section*{Description}

The Tire (Friction Parameterized) block models a tire with friction parameterized in terms of static and kinetic coefficients. The static friction coefficient determines the applied torque at which the tire loses traction and begins to slip. The kinetic friction coefficient determines the amount of torque that the tire transmits to the pavement once it begins to slip. The tire regains traction once its relative velocity over the pavement falls below the traction velocity tolerance specified.

To increase the fidelity of the tire model, the block enables you to specify properties such as tire compliance, inertia, and rolling resistance. However, these properties increase the complexity of the tire model and can slow down simulation. Consider ignoring tire compliance and inertia if simulating the model in real time or if preparing the model for hardware-in-the-loop (HIL) simulation.

The traction state model of this block is based on the traction state model of the Fundamental Friction Clutch block. For more information on the state model, see "Clutch States" on page 1-289.

\section*{Ports}

\section*{Input}

\section*{N - Normal force}
physical signal

Physical signal input port associated with the normal force acting on the tire. The normal force is positive if it acts downward on the tire, pressing it against the pavement.

\section*{M - Friction coefficients}
physical signal | vector | \(\left[\mu_{s}, \mu_{k}\right.\) ]
Physical signal input port associated with the static \(\left(\mu_{s}\right)\) and kinetic ( \(\mu_{k}\) ) friction coefficients. Provide the friction coefficients as a two-element vector, specified in the order \(\left[\mu_{s}, \mu_{k}\right.\) ].

\section*{Dependencies}

Port \(\mathbf{M}\) is exposed only if the Main > Friction model parameter is set to Physical signal friction coefficients. For more information, see Main Parameter Dependencies.

\section*{Output}

\section*{S - Slip \\ physical signal}

Physical signal output port associated with the relative slip between the tire and road.

\section*{Conserving}

\section*{A - Axle}
mechanical rotational
Mechanical rotational port associated with the axle that the tire sits on.

\section*{H - Hub}
mechanical translational
Mechanical translational port associated with the wheel hub that transmits the thrust generated by the tire to the remainder of the vehicle.

\section*{Parameters}

\section*{Main}

Specify characteristics of the tire, such as the rolling radius or static friction coefficient. The table shows how the visibility of some Main parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Main Parameter Dependencies}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Main} \\
\hline \multicolumn{3}{|l|}{Rolling radius} \\
\hline \multicolumn{3}{|l|}{Friction model - Choose Fixed kinetic friction coefficient, Table lookup kinetic friction coefficient, or Physical signal friction coefficients} \\
\hline Fixed kinetic friction coefficient & Table lookup kinetic friction coefficient & \multirow[t]{6}{*}{Physical signal friction coefficients - Exposes physical signal input port \(\mathbf{M}\) for providing the static \(\left(\mu_{s}\right)\) and kinetic ( \(\mu_{k}\) ) friction coefficients to the block as an array of two elements in the order \(\left[\mu_{s}, \mu_{k}\right]\).} \\
\hline \multicolumn{2}{|l|}{Static friction coefficient} & \\
\hline Kinetic friction coefficient & Tire slip vector & \\
\hline & Kinetic friction coefficient vector & \\
\hline & Interpolation method & \\
\hline & Extrapolation method & \\
\hline
\end{tabular}

\section*{Rolling radius - Unloaded tire-wheel radius}

\section*{0.3 m (default) | positive scalar}

Distance between the pavement and the center of the tire.

\section*{Friction model - Friction model}

Fixed kinetic friction coefficient (default)|Table lookup kinetic friction coefficient|Physical signal friction coefficients

The block provides three friction models. The default model, Fixed kinetic friction coefficient, uses constant static and kinetic friction coefficients that you specify.

To specify friction using table lookup, set the Friction model parameter to Table lookup kinetic friction coefficient. While this model treats the static coefficient as a constant, it treats the kinetic coefficient as a constant or function of tire slip. Use this model to model tire dynamics under constant pavement conditions.

To model tire dynamics under variable pavement conditions, set the Friction model parameter to Physical signal friction coefficients. Selecting this model exposes physical signal inport \(\mathbf{M}\). Use the \(\mathbf{M}\) port to provide the static ( \(\mu_{s}\) ) and kinetic ( \(\mu_{k}\) ) friction coefficients to the block as an array of two elements in the order [ \(\mu_{s}, \mu_{k}\) ].

\section*{Dependencies}

Each friction model option exposes related parameters and hides unrelated parameters. Selecting Physical signal friction coefficients exposes physical signal input port M. For more information, see Main Parameter Dependencies.

\section*{Static friction coefficient - Static friction coefficient 0.90 (default) | positive scalar}

Ratio of the allowable longitudinal force to the normal force allowed before the tire begins to slip \(\left(\mu_{s}\right)\). The parameter must be greater than either the kinetic friction coefficient or the largest value in the kinetic friction coefficient vector.

\section*{Dependencies}

This parameter is visible when the Friction model parameter is set to Fixed kinetic friction coefficient or Table lookup kinetic friction coefficient. For more information, see Main Parameter Dependencies.

\section*{Kinetic friction coefficient - Kinetic friction coefficient \\ 0.70 (default) | positive scalar}

Ratio of the transmitted longitudinal force to the normal force allowed during tire slip ( \(\mu_{k}\) ). The ratio must be greater than zero.

\section*{Dependencies}

This parameter is visible when the Friction model parameter is set to Fixed kinetic friction coefficient. For more information, see Main Parameter Dependencies.

\section*{Tire slip vector - Tire slip vector}
[0, .02, . 06, .15, .6, 1] rad/s (default)|vector

Vector of tire slip values that correspond to the kinetic friction coefficients in the Kinetic friction coefficient vector parameter. The vectors must be the same size. If the Tire slip vector parameter contains only nonnegative values, the slip versus friction function is assumed to be symmetric about the slip axis.

\section*{Dependencies}

This parameter is visible when the Friction model parameter is set to Table lookup kinetic friction coefficient. For more information, see Main Parameter Dependencies.

\section*{Kinetic friction coefficient vector - Kinetic friction coefficient [.89, .88, .8, .75, .7, .7] (default)|vector}

Vector of kinetic friction coefficients that correspond to the tire slip values specified in the Tire slip vector parameter. The vectors must be the same size.

\section*{Dependencies}

This parameter is visible when the Friction model parameter is set to Table lookup kinetic friction coefficient. For more information, see Main Parameter Dependencies.

\section*{Interpolation method - Interpolation method Linear (default) | Smooth}

Interpolation method for the lookup table to use for processing the tire slip-kinetic friction coefficient characteristic. To prioritize performance, select Linear. To produce a continuous curve with continuous first-order derivatives, select Smooth.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is visible when the Friction model parameter is set to Table lookup kinetic friction coefficient. For more information, see Main Parameter Dependencies.

\section*{Extrapolation method - Extrapolation method}

Linear (default) | Nearest | Error
Extrapolation method for the lookup table to use for processing the tire slip-kinetic friction coefficient characteristic. To produce:
- A curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region, select Linear.
- An extrapolation that does not go above the highest point in the data or below the lowest point in the data, select Nearest.
- An error if the input signal is outside the range of the table, select Error. This option ensures that simulation occurs only if your data is within the table range.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is visible when the Friction model parameter is set to Table lookup kinetic friction coefficient. For more information, see Main Parameter Dependencies.

\section*{Dynamics}

The table shows how the visibility of some parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Dynamics Parameter Dependencies Table}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Dynamics} \\
\hline \multicolumn{2}{|l|}{Compliance - Choose No compliance - Suitable for HIL simulation or Specify stiffness and damping} \\
\hline \multirow[t]{3}{*}{No compliance - Suitable for HIL simulation} & Specify stiffness and damping \\
\hline & Longitudinal stiffness \\
\hline & Longitudinal damping \\
\hline \multicolumn{2}{|l|}{Inertia - Choose No Inertia or Specify inertia and initial velocity} \\
\hline \multirow[t]{3}{*}{No Inertia} & Specify inertia and initial velocity \\
\hline & Tire inertia \\
\hline & Initial velocity \\
\hline
\end{tabular}

\section*{Compliance - Dynamical compliance model}

No compliance - Suitable for HIL simulation (default)|Specify stiffness and damping

Model for the dynamical compliance of the tire.
- No compliance - Suitable for HIL simulation - Tire is modeled with no dynamical compliance.
- Specify stiffness and damping - Tire is modeled as a stiff, dampened spring and deforms under load.

\section*{Dependencies}

Selecting the Specify stiffness and damping parameterization method, exposes stiffness and damping parameters. For more information, see Dynamics Parameter Dependencies Table.

\section*{Longitudinal stiffness - Longitudinal stiffness}

\section*{1e6 N/m (default) | positive scalar}

Tire longitudinal stiffness \(C_{F x}\).

\section*{Dependencies}

Selecting Specify stiffness and damping for the Compliance parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies Table.

\section*{Longitudinal damping - Longitudinal damping}

\section*{1000 N/(m/s) (default) | positive scalar}

Tire longitudinal damping \(b_{F x}\).

\section*{Dependencies}

Selecting Specify stiffness and damping for the Compliance parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies Table.

\section*{Inertia - Inertia model}

No inertia (default) |Specify inertia and initial velocity
Model for the rotational inertia of the tire.
- No inertia - Tire is modeled with no dynamical compliance.
- Specify inertia and initial velocity - Tire is modeled as a stiff, dampened spring and deforms under load.

\section*{Dependencies}

Selecting the Specify inertia and initial velocity parameterization method, exposes inertia and velocity parameters. For more information, see Dynamics Parameter Dependencies Table.

\section*{Tire inertia - Rotational inertia}

1 kg*m^2 (default) | positive scalar
Rotational inertia \(I_{w}\) of the wheel-tire assembly.

\section*{Dependencies}

Selecting Specify inertia and initial velocity for the Inertia parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies Table.

\section*{Initial velocity - Initial rotational velocity \\ 0 rad/s (default)|scalar}

Initial angular velocity, \(\Omega(0)\), of the tire.

\section*{Dependencies}

Selecting Specify inertia and initial velocity for the Inertia parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies Table.

\section*{Rolling Resistance}

The table shows how the visibility of some Rolling Resistance parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Rolling Resistance Parameter Dependencies Table}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Rolling Resistance} \\
\hline \multicolumn{3}{|l|}{Rolling resistance - Choose Off or On} \\
\hline \multirow[t]{10}{*}{Off} & \multicolumn{2}{|l|}{On} \\
\hline & \multicolumn{2}{|l|}{Resistance model - Choose Constant coefficient or Pressure and velocity dependent} \\
\hline & Constant coefficient & Pressure and velocity dependent \\
\hline & Constant coefficient & Tire pressure \\
\hline & & Alpha \\
\hline & & Beta \\
\hline & & Coefficient A \\
\hline & & Coefficient B \\
\hline & & Coefficient C \\
\hline & \multicolumn{2}{|l|}{Velocity threshold} \\
\hline
\end{tabular}

\section*{Rolling resistance - Rolling resistance option}

Off (default) | On
Options for modeling rolling resistance are:
- Off - Neglect rolling resistance.
- On - Include rolling resistance.

\section*{Dependencies}

Selecting On exposes rolling resistance parameters. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Resistance model - Rolling resistance model}

Constant coefficient (default)|Pressure and velocity dependent
Model for the rolling resistance of the tire.
- Constant coefficient - Neglect rolling resistance.
- Pressure and velocity dependent - Include rolling resistance.

\section*{Dependencies}

Each Resistance model option exposes related parameters. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Constant coefficient - Proportionality constant}
0.015 (default) | positive scalar

Coefficient that sets the proportionality between the normal force and the rolling resistance force. The parameter must be greater than zero.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Constant coefficient for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Tire pressure - Tire pressure \\ 250e3 Pa (default) | positive scalar}

Inflation pressure of the tire. The parameter must be greater than zero.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Alpha - Tire pressure equation exponent}
-0.003 (default) | scalar
Exponent of the tire pressure in the model equation. See Rolling Resistance Parameter Dependencies Table.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Beta - Normal force equation exponent}
0.97 (default) | scalar

Exponent of the normal force model equation. See Rolling Resistance Parameter Dependencies Table.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Coefficient A - Velocity-independent force component A 84e-4 (default)}

Velocity-independent force component in the model equation. The parameter must be greater than zero. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Coefficient B - Velocity-dependent force component B}
\(6.2 \mathrm{e}-4 \mathrm{~s} / \mathrm{m}\) (default) | positive scalar
Velocity-dependent force component in the model equation. The parameter must be greater than zero. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Coefficient C - Velocity-dependent force component C \(1.6 \mathrm{e}-4 \mathrm{~s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2\) (default)| positive scalar}

Force component that depends on the square of the velocity term in the model equation. The parameter must be greater than zero. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies Table.

\section*{Velocity threshold - Wheel hub velocity threshold for mathematical slip model}
\(0.001 \mathrm{~m} / \mathrm{s}\) (default) | positive scalar
Velocity at which the full rolling resistance force is transmitted to the rolling hub. The parameter ensures that the force remains continuous during velocity direction changes, which increases the numerical stability of the simulation. The parameter must be greater than zero.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Advanced}

Use the Advanced tab to specify parameters that the state machine uses to determine the model of the tire.

\section*{Traction velocity tolerance - Traction velocity tolerance \(0.01 \mathrm{~m} / \mathrm{s}\) (default) | positive scalar}

Magnitude of the relative velocity between the tire and ground at which the tire regains traction. Setting this value too low prevents the tire from entering a state where it has traction. Setting it too high can cause the tire velocity to change suddenly when the tire gains traction, and can result in an unstable simulation. The parameter must be greater than zero.

\section*{Engagement threshold force - Engagement threshold force} 10 N (default) | positive scalar

Normal force values below the Engagement threshold force are not applied to the tire. Setting this value too low can cause the tire to gain and lose traction rapidly. Setting this value too high can give unrealistically low static and dynamic friction forces. The parameter must be greater than zero.

\section*{Initial traction state - Initial traction state \\ Tire is initially slipping (default)|Tire is initially in traction}

Option to have the tire in traction or slipping at the start of simulation.

\section*{More About}

\section*{Real-Time and Hardware-in-the-Loop Simulation}

For optimal simulation performance, set the Dynamics > Compliance parameter to No compliance - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Fundamental Friction Clutch | Tire (Magic Formula) | Tire (Simple) | Tire-Road Interaction (Magic Formula)

\section*{Topics}
"Complete Vehicle Model"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" "Clutch States" on page 1-289

\section*{Introduced in R2012a}

\section*{Tire (Magic Formula)}

Tire with longitudinal behavior given by Magic Formula coefficients
Library: Simscape / Driveline / Tires \& Vehicles


\section*{Description}

The Tire (Magic Formula) block models a tire with longitudinal behavior given by the Magic Formula [1], an empirical equation based on four fitting coefficients. The block can model tire dynamics under constant or variable pavement conditions.

The longitudinal direction of the tire is the same as its direction of motion as it rolls on pavement. This block is a structural component based on the Tire-Road Interaction (Magic Formula) block.

To increase the fidelity of the tire model, you can specify properties such as tire compliance, inertia, and rolling resistance. However, these properties increase the complexity of the tire model and can slow down simulation. Consider ignoring tire compliance and inertia if simulating the model in real time or if preparing the model for hardware-in-the-loop (HIL) simulation.

\section*{Tire Model}

The Tire (Magic Formula) block models the tire as a rigid wheel-tire combination in contact with the road and subject to slip. When torque is applied to the wheel axle, the tire pushes on the ground (while subject to contact friction) and transfers the resulting reaction as a force back on the wheel. This action pushes the wheel forward or backward. If you include the optional tire compliance, the tire also flexibly deforms under load.

The figure shows the forces acting on the tire. The table defines the tire model variables.


Tire Model Variables
\begin{tabular}{|l|l|}
\hline Symbol & Description and Unit \\
\hline\(r_{w}\) & Wheel radius \\
\hline\(V_{\chi}\) & Wheel hub longitudinal velocity \\
\hline\(u\) & Tire longitudinal deformation \\
\hline\(\Omega\) & Wheel angular velocity \\
\hline\(\Omega^{\prime}\) & \begin{tabular}{l} 
Contact point angular velocity. If there is no tire \\
longitudinal deformation, that is, if \(u=0, \Omega^{\prime}=\Omega\).
\end{tabular} \\
\hline\(r_{w} \Omega^{\prime}\) & Tire tread longitudinal velocity \\
\hline\(V_{S X}=r_{w} \Omega-V_{\chi}\) & Wheel slip velocity \\
\hline\(V_{s X}^{\prime}=r_{w} \Omega^{\prime}-V_{X}\) & \begin{tabular}{l} 
Contact slip velocity. If there is no tire longitudinal \\
deformation, that is, if \(u=0, V_{s x}^{\prime}=V_{S x}\).
\end{tabular} \\
\hline\(k=\frac{V_{S X}}{\left|V_{\chi}\right|}\) & Wheel slip \\
\hline\(k^{\prime}=\frac{V^{\prime}{ }_{S X}}{\left|V_{X}\right|}\) & \begin{tabular}{l} 
Contact slip. If there is no tire longitudinal \\
deformation, that is, if \(u=0, k^{\prime}=k\).
\end{tabular} \\
\hline\(V_{t h}\) & Wheel hub threshold velocity \\
\hline\(F_{z}\) & Vertical load on tire \\
\hline\(F_{X}\) & \begin{tabular}{l} 
Longitudinal force exerted on the tire at the contact \\
point
\end{tabular} \\
\hline\(C_{F_{X}}=\left(\frac{\partial F_{X}}{\partial u}\right)_{0}\) & Tire longitudinal stiffness under deformation \\
\hline\(b_{F_{X}}=\left(\frac{\partial F_{X}}{\partial \dot{u}}\right)_{0}\) & Tire longitudinal damping under deformation \\
\hline\(I_{w}\) & Wheel-tire inertia, such that the effective mass is \\
equal to \(\frac{I_{w}}{r_{w}^{2}}\) \\
\hline\(\tau_{d r i v e}\) & Torque applied by the axle to the wheel \\
\hline
\end{tabular}

\section*{Tire Kinematics and Response}

\section*{Roll and Slip}

A nonslipping tire would roll and translate as \(V_{x}=r_{w} \Omega\). However, as tires do slip, they respond by developing a longitudinal force, \(F_{x}\).

The wheel slip velocity is \(V_{S X}=r_{w} \Omega-V_{x}\). The wheel slip is \(k=\frac{V_{S X}}{\left|V_{\chi}\right|}\). For a locked, sliding wheel, \(k=-1\). For perfect rolling, \(k=0\).

\section*{Slip at Low Speed}

For low speeds, as defined by \(\left|V_{x}\right| \leq\left|V_{t h}\right|\), the wheel slip becomes:
\[
k=\frac{2 V_{s x}}{\left(V_{t h}+\frac{V_{x}^{2}}{V_{t h}}\right)}
\]

This modification allows for a nonsingular, nonzero slip at zero wheel velocity. For example, for perfect slipping, that is, in the case of a nontranslating spinning tire, \(V_{\chi}=0\) while \(k=\frac{2 r_{w} \Omega}{V_{t h}}\) is finite.

\section*{Deformation}

If the tire is modeled with compliance, it is also flexible. In this case, because the tire deforms, the tire-road contact point turns at a slightly different angular velocity, \(\Omega^{\prime}\), from the wheel, \(\Omega\), and requires, instead of the wheel slip, the contact point or contact patch slip \(\kappa^{\prime}\). The block models the deforming tire as a translational spring-damper of stiffness, \(C_{F_{x^{\prime}}}\) and damping, \(b_{F_{x}}\).

If you model a tire without compliance, that is, if \(u=0\), then there is no tire longitudinal deformation at any time in the simulation and:
- \(k^{\prime}=k\)
- \(V_{s X}^{\prime}=V_{S X}\)
- \(\Omega^{\prime}=\Omega\)

\section*{Tire and Wheel Dynamics}


The full tire model is equivalent to this Simscape/Simscape Driveline component diagram. It simulates both transient and steady-state behavior and correctly represents starting from, and coming to, a stop. The Translational Spring and Translational Damper are equivalent to the tire stiffness \(C_{F_{x}}\) and damping \(b_{F_{x}}\). The Tire-Road Interaction (Magic Formula) block models the longitudinal force \(F_{x}\) on the tire as a function of \(F_{z}\) and \(k^{\prime}\) using the Magic Formula, with \(k^{\prime}\) as the independent slip variable.

The Wheel and Axle radius is the wheel radius \(r_{w}\). The Mass value is the effective mass, \(\frac{I_{w}}{r_{w}^{2}}\). The tire characteristic function \(f\left(k^{\prime}, F_{z}\right)\) determines the longitudinal force \(F_{x}\). Together with the driveshaft torque applied to the wheel axis, \(F_{x}\) determines the wheel angular motion and longitudinal motion.

Without tire compliance, the Translational Spring and Translational Damper are omitted, and contact variables revert to wheel variables. In this case, the tire effectively has infinite stiffness, and port \(\mathbf{P}\) of Wheel and Axle connects directly to port \(\mathbf{T}\) of Tire-Road Interaction (Magic Formula).

Without tire inertia, the Mass is omitted.

\section*{Assumptions and Limitations}
- The Tire (Magic Formula) block assumes longitudinal motion only and includes no camber, turning, or lateral motion.
- Tire compliance implies a time lag in the tire response to the forces on it. Time lag simulation increases model fidelity but reduces simulation performance. See "Adjust Model Fidelity".

\section*{Ports}

\section*{Input}

\section*{N - Normal force}
physical signal
Physical signal input port associated with the normal force acting on the tire. The normal force is positive if it acts downward on the tire, pressing it against the pavement.

\section*{M - Magic formula coefficients}
physical signal | vector \(\mid[B, C, D, E]\)
Physical signal input port associated with the Magic Formula coefficients. Provide the Magic Formula coefficients as a four-element vector, specified in the order \([B, C, D, E]\).

\section*{Dependencies}

Port \(\mathbf{M}\) is exposed only if the Main > Parameterize by parameter is set to Physical signal Magic Formula coefficients. For more information, see Main Parameter Dependencies.

\section*{Output}

\section*{S - Slip \\ physical signal}

Physical signal output port associated with the relative slip between the tire and road.

\section*{Conserving}

A - Axle
mechanical rotational
Mechanical rotational port associated with the axle that the tire sits on.

\section*{H - Hub}
mechanical translational
Mechanical translational port associated with the wheel hub that transmits the thrust generated by the tire to the remainder of the vehicle.

\section*{Parameters}

\section*{Main}

The table shows how the visibility of some Main parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Main Parameter Dependencies
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Main } \\
\hline \begin{tabular}{l} 
Parameterize by - Choose Peak longitudinal force and corresponding slip, \\
Constant Magic Formula coefficients, Load-dependent Magic Formula \\
coefficients, or Physical signal Magic Formula coefficients
\end{tabular} \\
\hline \begin{tabular}{l} 
Peak longitudinal \\
force and \\
corresponding slip
\end{tabular} & \begin{tabular}{l} 
Constant Magic \\
Formula \\
coefficients
\end{tabular} & \begin{tabular}{l} 
Load-dependent \\
Magic Formula \\
coefficients
\end{tabular} & \begin{tabular}{l} 
Physical signal \\
Magic Formula \\
coefficients - \\
Exposes physical
\end{tabular} \\
\hline Rated vertical load & \begin{tabular}{l} 
Magic Formula B \\
coefficient
\end{tabular} & \begin{tabular}{l} 
Magic Formula C- \\
coefficient \\
parameter, p_Cx1
\end{tabular} & \begin{tabular}{l} 
Expnal input port M \\
for providing the \\
Magic Formula \\
coefficients to the \\
block as an array of \\
elements in this \\
order [B, C, D, E].
\end{tabular} \\
\hline \begin{tabular}{l} 
Peak longitudinal \\
force at rated load
\end{tabular} & \begin{tabular}{l} 
Magic Formula C \\
coefficient
\end{tabular} & \begin{tabular}{l} 
Magic Formula D- \\
coefficient \\
parameters, [p_Dx1 \\
p_Dx2]
\end{tabular} \\
\hline rated load (percent) & \begin{tabular}{l} 
Magic Formula D \\
coefficient
\end{tabular} & \begin{tabular}{l} 
Magic Formula E- \\
coefficient \\
parameters, [p_Ex1 \\
p_Ex2 p_Ex3 p_Ex4]
\end{tabular} \\
\hline & \begin{tabular}{l} 
Magic Formula E \\
coefficient
\end{tabular} & \begin{tabular}{l} 
Magic Formula BCD- \\
coefficient \\
parameters, [p_Kx1 \\
p_Kx2 p_Kx3]
\end{tabular} \\
\hline & \begin{tabular}{l} 
Magic Formula H- \\
coefficient \\
parameters, [p_Hx1 \\
p_Hx2]
\end{tabular} \\
\hline \begin{tabular}{ll} 
Magic Formula V- \\
coefficient \\
parameters, [p_Vx1 \\
p_Vx2]
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameterize by - Parameterization method}

Peak longitudinal force and corresponding slip (default)|Constant Magic Formula coefficients|Load-dependent Magic Formula coefficients| Physical signal Magic Formula coefficients

Magic Formula tire-road interaction model.
To model tire dynamics under constant pavement conditions, select one of these models:
- Peak longitudinal force and corresponding slip - Parameterize the Magic Formula with physical characteristics of the tire.
- Constant Magic Formula coefficients - Specify the parameters that define the constant \(B, C, D\), and \(E\) coefficients as scalars, with these default values.
\begin{tabular}{|l|l|}
\hline Coefficient & Default Value \\
\hline\(B\) & 10 \\
\hline\(C\) & 1.9 \\
\hline\(D\) & 1 \\
\hline E & 0.97 \\
\hline
\end{tabular}
- Load-dependent Magic Formula coefficients - Specify the parameters that define the load-dependent \(C, D, E, K, H\), and \(V\) coefficients as vectors, one for each coefficient, with these default values.
\begin{tabular}{|c|c|c|}
\hline Coefficient & Parameters & Default Values \\
\hline C & p_Cx1 & 1.685 \\
\hline D & [ p_Dx1 p_Dx2] & [ 1.21 -0.037 ] \\
\hline E & [ p peEx1 p_Ex2 p_Ex3 & [ \(0.3440 .095-0.020\) ] \\
\hline K & [ p_Kx1 p_Kx2 p_Kx3] & [ \(21.51-0.1630 .245\) ] \\
\hline H & [ p_Hx1 p_Hx2] & [ -0.002 0.002] \\
\hline V & [ p_Vx1 p_Vx2 ] & [ 000 ] \\
\hline
\end{tabular}

To model tire dynamics under variable pavement conditions, select Physical signal Magic Formula coefficients. Selecting this model exposes a physical signal port M. Use the port to input the Magic Formula coefficients as a four-element vector, specified in the order \([B, C, D, E]\).

\section*{Dependencies}

Each parameterization method option exposes related parameters and hides unrelated parameters. Selecting Physical signal Magic Formula coefficients exposes a physical signal input port. For more information, see Main Parameter Dependencies.

\section*{Rated vertical load - Rated load force \\ 3000 N (default) | positive scalar}

Rated vertical load force \(F_{z 0}\).

\section*{Dependencies}

This parameter is exposed only when you select the Peak longitudinal force and corresponding slip parameterization method. For more information, see Main Parameter Dependencies.

\section*{Peak longitudinal force at rated load - Maximum longitudinal force at rated load}

3500 N (default) | positive scalar
Maximum longitudinal force \(F_{x 0}\) that the tire exerts on the wheel when the vertical load equals its rated value \(F_{z 0}\).

\section*{Dependencies}

This parameter is exposed only when you select the Peak longitudinal force and corresponding slip parameterization method. For more information, see Main Parameter Dependencies.

\section*{Slip at peak force at rated load (percent) - Percent slip at maximum longitudinal force and rated load}

10 (default) | positive scalar
Contact slip \(\kappa^{\prime}{ }_{0}\), expressed as a percentage (\%), when the longitudinal force equals its maximum value \(F_{x 0}\) and the vertical load equals its rated value \(F_{z 0}\).

\section*{Dependencies}

This parameter is exposed only when you select the Peak longitudinal force and corresponding slip parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula B coefficient - Constant Magic Formula B coefficient 10 (default) | positive scalar}

Load-independent Magic Formula \(B\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula C coefficient - Constant Magic Formula C coefficient} 1.9 (default) | positive scalar

Load-independent Magic Formula \(C\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula D coefficient - Constant Magic Formula D coefficient 1 (default) | positive scalar}

Load-independent Magic Formula \(D\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula E coefficient - Constant Magic Formula E coefficient} 0.97 (default) | positive scalar

Load-independent Magic Formula E coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Tire nominal vertical load - Normal force 4000 N (default) | positive scalar}

Nominal normal force \(F_{z 0}\) on tire.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.
```

Magic Formula C-coefficient parameter, p_Cx1 - Variable Magic Formula C coefficient

```
```

1.685 (default) | scalar

```
```

1.685 (default) | scalar

```

Load-dependent Magic Formula \(C\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

Magic Formula D-coefficient parameters, [p_Dx1 p_Dx2] - Variable Magic Formula D coefficient
```

[1.21, -. 037] (default)| vector

```

Load-dependent Magic Formula \(D\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.
```

Magic Formula E-coefficient parameters, [p_Ex1 p_Ex2 p_Ex3 p_Ex4] -
Variable Magic Formula E coefficient
[.344, .095, -.02, 0] (default)|vector

```

Load-dependent Magic Formula E coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula BCD-coefficient parameters, [p_Kx1 p_Kx2 p_Kx3] Variable Magic Formula K coefficient}
[21.51, -.163, .245] (default)|vector
Load-dependent Magic Formula \(K\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula H-coefficient parameters, [p_Hx1 p_Hx2] - Variable Magic Formula \(\boldsymbol{H}\) coefficient \\ [-.002, .002] (default) | vector}

Load-dependent Magic Formula \(H\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Magic Formula V-coefficient parameters, [p_Vx1 p_Vx2] - Variable Magic Formula V coefficient}
```

[0, 0] (default)| vector

```

Load-dependent Magic Formula \(V\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Main Parameter Dependencies.

\section*{Geometry}

\section*{Rolling radius - Unloaded tire-wheel radius}
0.3 m (default) | positive scalar

Unloaded tire-wheel radius, \(r_{w}\).

\section*{Dynamics}

The table shows how the visibility of some Dynamics parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Dynamics Parameter Dependencies}
\begin{tabular}{|l|l|}
\hline Dynamics \\
\hline \begin{tabular}{l} 
Compliance - Choose No compliance - \\
Specify stiffness and damping
\end{tabular} & \multicolumn{1}{|l|}{\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
No compliance - Suitable for HIL \\
simulation
\end{tabular} & Specify stiffness and damping \\
\cline { 2 - 3 } & Longitudinal stiffness \\
\cline { 2 - 3 } & Longitudinal damping \\
\hline Inertia - Choose No Inertia or Specify & inertia and initial velocity \\
\hline No Inertia & Specify inertia and initial velocity \\
\hline & Tire inertia \\
\hline & Initial velocity \\
\hline
\end{tabular}}
\end{tabular}

\section*{Compliance - Dynamical compliance model}

No compliance - Suitable for HIL simulation (default)|Specify stiffness and damping

Model for the dynamical compliance of the tire.
- No compliance - Suitable for HIL simulation - Tire is modeled with no dynamical compliance.
- Specify stiffness and damping - Tire is modeled as a stiff, dampened spring and deforms under load.

\section*{Dependencies}

Selecting the Specify stiffness and damping parameterization method, exposes stiffness and damping parameters. For more information, see Dynamics Parameter Dependencies.

\section*{Longitudinal stiffness - Longitudinal stiffness}
le6 N/m (default) | positive scalar

Tire longitudinal stiffness \(C_{F x}\).

\section*{Dependencies}

Selecting Specify stiffness and damping for the Compliance parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies.

\section*{Longitudinal damping - Longitudinal damping}
\(1000 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\) (default) | positive scalar
Tire longitudinal damping \(b_{F x}\).

\section*{Dependencies}

Selecting Specify stiffness and damping for the Compliance parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies.

\section*{Inertia - Inertia model}

No inertia (default) |Specify inertia and initial velocity
Model for the rotational inertia of the tire.
- No inertia - Tire is modeled with no dynamical compliance.
- Specify inertia and initial velocity - Tire is modeled as a stiff, dampened spring and deforms under load.

\section*{Dependencies}

Selecting the Specify inertia and initial velocity parameterization method, exposes inertia and velocity parameters. For more information, see Dynamics Parameter Dependencies.

\section*{Tire inertia - Rotational inertia}

1 kg*m^2 (default) | positive scalar
Rotational inertia \(I_{w}\) of the wheel-tire assembly.

\section*{Dependencies}

Selecting Specify inertia and initial velocity for the Inertia parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies.

\author{
Initial velocity - Initial rotational velocity 0 rad/s (default)|scalar
}

Initial angular velocity, \(\Omega(0)\), of the tire.

\section*{Dependencies}

Selecting Specify inertia and initial velocity for the Inertia parameter, exposes this parameter. For more information, see Dynamics Parameter Dependencies.

\section*{Rolling Resistance}

The table shows how the visibility of some parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Rolling Resistance Parameter Dependencies
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Rolling Resistance} \\
\hline \multicolumn{3}{|l|}{Rolling resistance - Choose Off or On} \\
\hline \multirow[t]{10}{*}{Off} & \multicolumn{2}{|l|}{On} \\
\hline & \multicolumn{2}{|l|}{Resistance model - Choose Constant coefficient or Pressure and velocity dependent} \\
\hline & Constant coefficient & Pressure and velocity dependent \\
\hline & Constant coefficient & Tire pressure \\
\hline & & Alpha \\
\hline & & Beta \\
\hline & & Coefficient A \\
\hline & & Coefficient B \\
\hline & & Coefficient C \\
\hline & \multicolumn{2}{|l|}{Velocity threshold} \\
\hline
\end{tabular}

\section*{Rolling resistance - Rolling resistance option}

Off (default) | On
Options for modeling rolling resistance are:
- Off - Neglect rolling resistance.
- \(0 n\) - Include rolling resistance.

Dependencies
Selecting On exposes rolling resistance parameters. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Resistance model - Rolling resistance model}

Constant coefficient (default)|Pressure and velocity dependent
Model for the rolling resistance of the tire.
- Constant coefficient - Neglect rolling resistance.
- Pressure and velocity dependent - Include rolling resistance.

\section*{Dependencies}

Each Resistance model option exposes related parameters. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Constant coefficient - Proportionality constant \\ 0.015 (default) | positive scalar}

Coefficient that sets the proportionality between the normal force and the rolling resistance force. The parameter must be greater than zero.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Constant coefficient for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Tire pressure - Tire pressure \\ 250e3 Pa (default) | positive scalar}

Inflation pressure of the tire. The parameter must be greater than zero.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Alpha - Tire pressure equation exponent}
- 0.003 (default) | scalar

Exponent of the tire pressure in the model equation. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Beta - Normal force equation exponent}
0.97 (default) | scalar

Exponent of the normal force model equation. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Coefficient A - Velocity-independent force component A 84e-4 (default)}

Velocity-independent force component in the model equation. The parameter must be greater than zero. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Coefficient B - Velocity-dependent force component B}
6.2e-4 s/m (default) | positive scalar

Velocity-dependent force component in the model equation. The parameter must be greater than zero. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Coefficient C - Velocity-dependent force component C} \(1.6 \mathrm{e}-4 \mathrm{~s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2\) (default) | positive scalar

Force component that depends on the square of the velocity term in the model equation. The parameter must be greater than zero. See "Pressure and Velocity Dependent Model" on page 1-464.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter and Pressure and velocity dependent for the Resistance model parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Velocity threshold - Wheel hub velocity threshold for mathematical slip model}
\(0.001 \mathrm{~m} / \mathrm{s}\) (default) | positive scalar
Velocity at which the full rolling resistance force is transmitted to the rolling hub. The parameter ensures that the force remains continuous during velocity direction changes, which increases the numerical stability of the simulation. The parameter must be greater than zero.

\section*{Dependencies}

Selecting On for the Rolling resistance parameter exposes this parameter. For more information, see Rolling Resistance Parameter Dependencies.

\section*{Advanced}

\section*{Velocity threshold - Wheel hub velocity threshold for mathematical slip model}
0.1 m/s (default) | positive scalar

Wheel hub velocity \(V_{t h}\) below which the slip calculation is modified to avoid singular evolution at zero velocity. Must be positive.

\section*{More About}

\section*{Real-Time and Hardware-in-the-Loop Simulation}

For optimal simulation performance, set the Dynamics > Compliance parameter to No compliance - Suitable for HIL simulation.

\section*{References}
[1] Pacejka, H. B. Tire and Vehicle Dynamics. Elsevier Science, 2005.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathbb{C o d e r}^{\mathrm{TM}}\).

\author{
See Also \\ Tire (Friction Parameterized) | Tire (Simple) | Tire-Road Interaction (Magic Formula)
}

\author{
Topics \\ "Complete Vehicle Model" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
}

Introduced in R2011a

\section*{Tire-Road Interaction (Magic Formula)}

\author{
Tire-road dynamics given by magic formula coefficients Library: Simscape / Driveline / Tires \& Vehicles / Tire Subcomponents
}


\section*{Description}

The Tire-Road Interaction (Magic Formula) block models the interaction between the tire tread and road pavement. The longitudinal force arising from this interaction is given by the magic formula, an empirical equation based on four fitting coefficients. Tire properties such as compliance and inertia are ignored.

\section*{Tire-Road Interaction Model}

The Tire-Road Interaction (Magic Formula) block models the longitudinal forces at the tire-road contact patch using the Magic Formula of Pacejka [1].

The figure displays the forces on the tire. The table defines the tire model variables.


Tire-Road Contact Variables
\begin{tabular}{|l|l|}
\hline Symbol & Description and Unit \\
\hline\(\Omega\) & Wheel angular velocity \\
\hline\(r_{w}\) & Wheel radius \\
\hline\(V_{x}\) & Wheel hub longitudinal velocity \\
\hline\(r_{w} \Omega\) & Tire tread longitudinal velocity \\
\hline\(V_{S X}=r_{w} \Omega-V_{X}\) & \begin{tabular}{l} 
Wheel slip velocity, defined as the difference between the \\
longitudinal velocities of the wheel hub and the tire tread
\end{tabular} \\
\hline\(k=\frac{V_{S X}}{\left|V_{\chi}\right|}\) & Wheel slip \\
\hline\(F_{z}\) & Vertical load on tire \\
\hline\(F_{z 0}\) & Nominal vertical load on tire \\
\hline\(F_{X}=f\left(\kappa, F_{z}\right)\) & \begin{tabular}{l} 
Longitudinal force exerted on the tire at the contact \\
point. \\
Also a characteristic function \(f\) of the tire.
\end{tabular} \\
\hline
\end{tabular}

\section*{Tire Response}

\section*{Forces and Characteristic Function}

A tire model provides a steady-state tire characteristic function, \(F_{\chi}=f\left(\kappa, F_{z}\right)\), the longitudinal force \(F_{x}\) on the tire, based on:
- Vertical load \(F_{z}\)
- Wheel slip \(к\)

\section*{Magic Formula with Constant Coefficients}

The Magic Formula is a specific form for the tire characteristic function, characterized by four dimensionless coefficients, \(B, C, D\), and \(E\), or stiffness, shape, peak, and curvature:
\[
F_{\chi}=f\left(\kappa, F_{z}\right)=F_{z} \cdot D \cdot \sin \left(C \cdot \arctan \left\{B K-E\left[B K-\arctan \left(B_{K}\right)\right]\right\}\right)
\]

The slope of \(f\) at \(k=0\) is \(B C D \cdot F_{z}\).

\section*{Magic Formula with Load-Dependent Coefficients}

A more general Magic Formula uses dimensionless coefficients that are functions of the tire load. A more complex set of parameters p_i, entered in the dialog box, specifies these functions:
\[
F_{\chi 0}=D_{\chi} \sin \left(C_{\chi} \arctan \left\{B_{\chi} K_{\chi}-E_{\chi}\left[B_{\chi} K_{\chi}-\arctan \left(B_{\chi} K_{\chi}\right)\right]\right\}\right)+S_{V \chi}
\]

Where:
\[
\begin{aligned}
& d f_{\mathrm{z}}=\frac{\left(F_{\mathrm{z}}-F_{\mathrm{z} 0}\right)}{F_{\mathrm{z}}} \\
& \kappa_{\mathrm{x}}=\kappa+S_{H x} \\
& C_{\mathrm{x}}=\mathrm{p}_{-} \mathrm{Cx} 1 \\
& D_{\mathrm{x}}=\mu_{\mathrm{x}} \cdot F_{\mathrm{z}} \\
& \mu_{\mathrm{x}}=\mathrm{p}_{-} \mathrm{Dx} 1+\mathrm{p}_{-} \operatorname{Dx} 2 \cdot d f_{\mathrm{z}} \\
& E_{\mathrm{x}}=\left(\mathrm{p}_{-} \operatorname{Ex} 1+\mathrm{p}_{-} \operatorname{Ex} 2 \cdot d f_{\mathrm{z}}+\mathrm{p}_{-} \operatorname{Ex} 3 \cdot d f_{\mathrm{z}} 2\right)\left[1-\mathrm{p}_{-} \operatorname{Ex} 4 \cdot \operatorname{sgn}\left(K_{\mathrm{x}}\right)\right]
\end{aligned}
\]
\[
\begin{aligned}
& K_{\mathrm{xK}}=F_{\mathrm{z}} \cdot\left(\mathrm{p}_{-} \mathrm{Kx} 1+\mathrm{p}_{-} \mathrm{Kx} 2 \cdot d f_{\mathrm{z}}\right) \cdot e^{\left(\mathrm{p}_{-} \mathrm{Kx} 3 \cdot d f_{\mathrm{z}}\right)} \\
& B_{\mathrm{x}}=\frac{K_{\mathrm{xK}}}{C_{\mathrm{x}} D_{\mathrm{x}}+\varepsilon_{\mathrm{x}}} \\
& S_{\mathrm{Hx}}=\mathrm{p}_{-} \mathrm{Hx} 1+\mathrm{p}_{-} \mathrm{Hx} 2 \cdot d f_{\mathrm{z}} \\
& S_{\mathrm{Vx}}=F_{\mathrm{z}} \cdot\left(\mathrm{p}_{-} \mathrm{Vx} 1+\mathrm{p}_{-} \mathrm{Vx} 2 \cdot d f_{\mathrm{z}}\right)
\end{aligned}
\]
\(S_{H x}\) and \(S_{V x}\) represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. \(\mu_{x}\) is the longitudinal load-dependent friction coefficient. \(\varepsilon_{\chi}\) is a small number inserted to prevent division by zero as \(F_{z}\) approaches zero.

\section*{Peak Longitudinal Force and Corresponding Slip}

The block uses a representative set of Magic Formula coefficients. The block scales the coefficients to yield the peak longitudinal force \(F_{x 0}\) at the corresponding slip \(\kappa_{0}\) that you specify, for rated vertical load \(F_{z 0}\).

\section*{Magic Formula Coefficients for Typical Road Conditions}

Numerical values are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.
\begin{tabular}{|l|l|l|l|l|}
\hline Surface & B & C & D & E \\
\hline Dry tarmac & 10 & 1.9 & 1 & 0.97 \\
\hline Wet tarmac & 12 & 2.3 & 0.82 & 1 \\
\hline Snow & 5 & 2 & 0.3 & 1 \\
\hline Ice & 4 & 2 & 0.1 & 1 \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}
- The Tire-Road Interaction (Magic Formula) block assumes longitudinal motion only and includes no camber, turning, or lateral motion.

\section*{Ports}

\section*{Input}

\section*{N - Normal force \\ physical signal}

Physical signal input port associated with the normal force acting on the tire. The normal force is positive if it acts downward on the tire, pressing it against the pavement.

\section*{M - Magic formula coefficients}
physical signal | vector | \([B, C, D, E]\)
Physical signal input port associated with the Magic Formula coefficients. Provide the Magic Formula coefficients as a four-element vector, specified in the order \([B, C, D, E]\).

\section*{Dependencies}

Port \(\mathbf{M}\) is exposed only if the Parameterize by parameter is set to Physical signal
Magic Formula coefficients. For more information, see Parameter Dependencies.

\section*{Output}

S - Slip
physical signal
Physical signal output port associated with the relative slip between the tire and road.

\section*{Conserving}

A - Axle
mechanical rotational
Mechanical rotational port associated with the axle that the tire sits on.

\section*{H - Hub}
mechanical translational
Mechanical translational port associated with the wheel hub that transmits the thrust generated by the tire to the remainder of the vehicle.

\section*{Parameters}

The table shows how the visibility of some Main parameters depends on the options that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Parameter Dependencies}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Parameters} \\
\hline \multicolumn{4}{|l|}{Parameterize by - Choose Peak longitudinal force and corresponding slip, Constant Magic Formula coefficients,Load-dependent Magic Formula coefficients, or Physical signal Magic Formula coefficients} \\
\hline Peak longitudinal force and corresponding slip & Constant Magic Formula coefficients & Load-dependent Magic Formula coefficients & \multirow[t]{7}{*}{Physical signal Magic Formula coefficients Exposes physical signal input port \(\mathbf{M}\) for providing the Magic Formula coefficients to the block as an array of elements in this order \([B, C, D, E]\).} \\
\hline Rated vertical load & Magic Formula B coefficient & \[
\begin{aligned}
& \text { Magic Formula C- } \\
& \text { coefficient } \\
& \text { parameter, p_Cx1 }
\end{aligned}
\] & \\
\hline Peak longitudinal force at rated load & Magic Formula C coefficient & \[
\begin{aligned}
& \text { Magic Formula D- } \\
& \text { coefficient } \\
& \text { parameters, [p_Dx1 } \\
& \text { p_Dx2] }
\end{aligned}
\] & \\
\hline \multirow[t]{4}{*}{Slip at peak force at rated load (percent)} & Magic Formula D coefficient & \[
\begin{aligned}
& \text { Magic Formula E- } \\
& \text { coefficient } \\
& \text { parameters, [p_Ex1 } \\
& \text { p_Ex2 p_Ex3 p_Ex4] }
\end{aligned}
\] & \\
\hline & Magic Formula E coefficient & \[
\begin{aligned}
& \text { Magic Formula BCD- } \\
& \text { coefficient } \\
& \text { parameters, [p_Kx1 } \\
& \text { p_Kx2 p_Kx3] }
\end{aligned}
\] & \\
\hline & & \[
\begin{aligned}
& \text { Magic Formula H- } \\
& \text { coefficient } \\
& \text { parameters, [p_Hx1 } \\
& \text { p_Hx2] }
\end{aligned}
\] & \\
\hline & & \[
\begin{aligned}
& \text { Magic Formula V- } \\
& \text { coefficient } \\
& \text { parameters, [p_Vx1 } \\
& \text { p_Vx2] }
\end{aligned}
\] & \\
\hline Velocity threshold & & & \\
\hline
\end{tabular}

\section*{Parameterize by - Parameterization method}

Peak longitudinal force and corresponding slip (default)|Constant Magic Formula coefficients|Load-dependent Magic Formula coefficients| Physical signal Magic Formula coefficients

Magic Formula tire-road interaction model.
To model tire dynamics under constant pavement conditions, select one of these models:
- Peak longitudinal force and corresponding slip - Parametrize the Magic Formula with physical characteristics of the tire.
- Constant Magic Formula coefficients - Specify the parameters that define the constant \(B, C, D\), and \(E\) coefficients as scalars, with these default values.
\begin{tabular}{|l|l|}
\hline Coefficient & Default Value \\
\hline\(B\) & 10 \\
\hline\(C\) & 1.9 \\
\hline\(D\) & 1 \\
\hline\(E\) & 0.97 \\
\hline
\end{tabular}
- Load-dependent Magic Formula coefficients - Specify the parameters that define the load-dependent \(C, D, E, K, H\), and \(V\) coefficients as vectors, one for each coefficient, with these default values.
\begin{tabular}{|c|c|c|}
\hline Coefficient & Parameters & Default Values \\
\hline C & p_Cx1 & 1.685 \\
\hline D & [ p_Dx1 p_Dx2] & [ \(1.21-0.037\) ] \\
\hline E & \[
\begin{aligned}
& \text { [ p_Ex1 p_Ex2 p_Ex3 } \\
& \text { p_Ex4] }
\end{aligned}
\] & [ \(0.3440 .095-0.020\) ] \\
\hline K & [ p_Kx1 p_Kx2 p_Kx3 ] & [ 21.51 -0.163 0.245] \\
\hline H & [ p_Hx1 p_Hx2] & [ -0.002 0.002] \\
\hline V & [ p_Vx1 p_Vx2] & [ 000 ] \\
\hline
\end{tabular}

To model tire dynamics under variable pavement conditions, select Physical signal Magic Formula coefficients. Selecting this model exposes a physical signal port M. Use the port to input the Magic Formula coefficients as a four-element vector, specified in the order \([B, C, D, E]\).

\section*{Dependencies}

Each parameterization method option exposes related parameters and hides unrelated parameters. Selecting Physical signal Magic Formula coefficients exposes a physical signal input port. For more information, see Parameter Dependencies.

\section*{Rated vertical load - Rated load force}

3000 N (default) | positive scalar
Rated vertical load force \(F_{z 0}\).

\section*{Dependencies}

This parameter is exposed only when you select the Peak longitudinal force and corresponding slip parameterization method. For more information, see Parameter Dependencies.

\section*{Peak longitudinal force at rated load - Maximum longitudinal force at rated load}

3500 N (default) | positive scalar
Maximum longitudinal force \(F_{x 0}\) that the tire exerts on the wheel when the vertical load equals its rated value \(F_{z 0}\).

\section*{Dependencies}

This parameter is exposed only when you select the Peak longitudinal force and corresponding slip parameterization method. For more information, see Parameter Dependencies.

\section*{Slip at peak force at rated load (percent) - Percent slip at maximum longitudinal force and rated load \\ 10 (default) | positive scalar}

Contact slip \(\kappa^{\prime}{ }_{0}\), expressed as a percentage (\%), when the longitudinal force equals its maximum value \(F_{x 0}\) and the vertical load equals its rated value \(F_{z 0}\).

\section*{Dependencies}

This parameter is exposed only when you select the Peak longitudinal force and corresponding slip parameterization method. For more information, see Parameter Dependencies.

\section*{Magic Formula B coefficient - Constant Magic Formula B coefficient 10 (default) | positive scalar}

Load-independent Magic Formula \(B\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Magic Formula C coefficient - Constant Magic Formula C coefficient 1.9 (default) | positive scalar}

Load-independent Magic Formula \(C\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Magic Formula D coefficient - Constant Magic Formula D coefficient 1 (default) | positive scalar}

Load-independent Magic Formula \(D\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Magic Formula E coefficient - Constant Magic Formula E coefficient 0.97 (default) | positive scalar}

Load-independent Magic Formula E coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Constant Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Tire nominal vertical load - Normal force \\ 4000 N (default) | positive scalar}

Nominal normal force \(F_{z 0}\) on tire.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Magic Formula C-coefficient parameter, p_Cx1 - Variable Magic Formula C coefficient}
1.685 (default) | scalar

Load-dependent Magic Formula \(C\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Magic Formula D-coefficient parameters, [p_Dx1 p_Dx2] - Variable Magic} Formula D coefficient

\section*{[1.21, -. 037] (default) | vector}

Load-dependent Magic Formula \(D\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.
```

Magic Formula E-coefficient parameters, [p_Ex1 p_Ex2 p_Ex3 p_Ex4] -
Variable Magic Formula E coefficient
[.344, .095, -.02, 0] (default)|vector

```

Load-dependent Magic Formula E coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.
```

Magic Formula BCD-coefficient parameters, [p_Kx1 p_Kx2 p_Kx3] - Variable Magic Formula K coefficient [21.51, -.163, .245] (default)|vector

```

Load-dependent Magic Formula \(K\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

Magic Formula H-coefficient parameters, [p_Hx1 p_Hx2] - Variable Magic Formula \(\boldsymbol{H}\) coefficient
[-.002, .002] (default) | vector
Load-dependent Magic Formula \(H\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.
```

Magic Formula V-coefficient parameters, [p_Vx1 p_Vx2] - Variable Magic
Formula V coefficient
[0, 0] (default)| vector

```

Load-dependent Magic Formula \(V\) coefficient.

\section*{Dependencies}

This parameter is exposed only when you select the Load-dependent Magic Formula coefficients parameterization method. For more information, see Parameter Dependencies.

\section*{Velocity threshold - Wheel hub velocity threshold for mathematical slip model}

\section*{0.1 m/s (default) | positive scalar}

Wheel hub velocity \(V_{t h}\) below which the slip calculation is modified to avoid singular evolution at zero velocity. Must be positive.

\section*{References}
[1] Pacejka, H. B. Tire and Vehicle Dynamics. Elsevier Science, 2005.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Tire (Friction Parameterized) | Tire (Magic Formula) | Tire (Simple)

\author{
Topics \\ "Complete Vehicle Model" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" \\ Introduced in R2011a
}

\section*{Tire (Simple)}

No-slip tire model with minimal parameters
Library: \(\quad\) Simscape / Driveline / Tires \& Vehicles


\section*{Description}

The Tire (Simple) block represents a simple, no-slip model of a tire that you parameterize by tire radius.

You can optionally add inertia, stiffness, or damping. These dynamics require additional computation that tends to make models less suitable for real-time simulation.

\section*{Assumptions and Limitations}
- The tire does not slip.
- Torque-transfer capability is infinite.

\section*{Ports}

\section*{Conserving}

\section*{A - Axle}
mechanical rotational
Mechanical rotational port associated with the axle that the tire sits on.

\section*{H - Hub}
mechanical translational

Mechanical translational port associated with the wheel hub that transmits the thrust generated by the tire to the remainder of the vehicle.

\section*{Parameters}

The table shows how the visibility of some Tire (Simple) parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

\section*{Parameter Dependencies}
\begin{tabular}{|l|l|}
\hline Parameter \\
\hline Rolling Radius \\
\hline \begin{tabular}{l} 
Compliance - Choose No compliance - \\
Specify stiffness and damping
\end{tabular} & Suitable for HIL simulation or \\
\hline \begin{tabular}{l} 
No compliance - Suitable for HIL \\
simulation
\end{tabular} & Specify stiffness and damping \\
& Longitudinal stiffness \\
\cline { 2 - 3 } & Longitudinal damping \\
\hline Inertia - Choose No Inertia or Specify & inertia and initial velocity \\
\hline No Inertia & Specify inertia and initial velocity \\
& Tire inertia \\
\cline { 2 - 2 } & Initial velocity \\
\hline
\end{tabular}

\section*{Rolling radius - Radius}

\section*{0.3 m (default) | positive scalar}

Rolling radius of the tire. The rolling radius must be greater than zero.

\section*{Compliance - Compliance model}

No compliance - Suitable for HIL simulation (default)|Specify stiffness and damping

Include or neglect longitudinal stiffness and damping.

\section*{Dependencies}

Selecting Specify stiffness and damping exposes other parameters. For more information, see Parameter Dependencies.

\section*{Longitudinal stiffness - Longitudinal stiffness}

\section*{1e6 N/m (default) | positive scalar}

Longitudinal stiffness of the tire. The parameter must be greater than zero.

\section*{Dependencies}

This parameter appears only if the Compliance parameter is set to Specify stiffness and damping. For more information, see Parameter Dependencies.

\section*{Longitudinal damping - Longitudinal damping}

\section*{1000 N/(m/s) (default) | positive scalar}

Longitudinal damping of the tire. The parameter must be greater than zero.

\section*{Dependencies}

This parameter appears only if the Compliance parameter is set to Specify stiffness and damping. For more information, see Parameter Dependencies.

\section*{Inertia - Inertia model}

No inertia (default)|Specify inertia and initial velocity
Include or neglect tire inertia.

\section*{Dependencies}

Selecting Specify inertia and initial velocity exposes other parameters. For more information, see Parameter Dependencies.

\section*{Tire inertia - Tire inertia}
\(1 \mathrm{kg*} / \mathrm{m}^{\wedge} 2\) (default) | positive scalar
Rotational inertia of the tire.

\section*{Dependencies}

This parameter appears only if the Inertia parameter is set to Specify inertia and initial velocity. For more information, see Parameter Dependencies.
```

Initial velocity - Initial velocity
0 rad/s (default)

```

Initial rotational velocity of the tire.

\section*{Dependencies}

This parameter appears only if the Inertia parameter is set to Specify inertia and initial velocity. For more information, see Parameter Dependencies.

\section*{More About}

\section*{Real-Time and Hardware-in-the-Loop Simulation}

For optimal simulation performance, set the Parameters > Compliance parameter to No compliance - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Tire (Friction Parameterized) | Tire (Magic Formula) | Tire-Road Interaction (Magic Formula)

\section*{Topics}
"Complete Vehicle Model"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

Introduced in R2012a

\section*{Torque Converter}

Viscous fluid coupling between rotating driveline shafts


\section*{Library}

Simscape / Driveline / Couplings \& Drives

\section*{Description}

A torque converter couples two driveline axes, transferring torque and angular motion by the hydrodynamic action of a viscous fluid. Unlike a friction clutch, a torque converter cannot lock the axes together. The Torque Converter block acts between the two ports I and \(T\). The block acts as a lookup function of the relative angular velocity of the two connected driveline axes. This function is defined at discrete angular velocities. For model details, see "Torque Converter Model" on page 1-631.


\section*{Ports and Conventions}

The impeller or pump port I and turbine port T are rotational conserving ports.
The Torque Converter block follows these conventions:
- The impeller port I is the port that connects to the engine, and the turbine port T is the port that connects to the load. In normal operation, power thus flows from the impeller to the turbine.
- Forward power flow implies power flowing from I to T. Reverse power flow implies power flowing from T to I .
- The power input is through the shaft with the larger speed. The power output is through the shaft with the smaller speed.

\section*{Parameters}

\section*{Torque Characteristics}

\section*{Speed ratio vector}

Vector of values of the independent variable, the dimensionless speed ratio \(R_{\omega}\). You must order these values in ascending order.

\section*{Torque ratio vector}

Vector of values of the block function's first dependent variable, the dimensionless torque ratio \(R_{\tau}\). Each torque ratio value corresponds to a speed ratio value.

\section*{Capacity factor parameterization}

Definition of the capacity factor, either \(K\) (ratio of impeller speed \(\omega_{\text {I }}\) to square root of impeller torque \(\tau_{\mathrm{I}}\) ) or \(K^{*}\) (ratio of \(\tau_{\mathrm{I}}\) to \(\omega_{\mathrm{I}}^{2}\) ). The default is \(K\).

\section*{Capacity factor reference speed}

Choice of speed in the capacity factor definition, depending on speed ratio \(R_{\omega}\). Select either:
- Impeller speed \(\omega_{\mathrm{I}}\) for all values of \(R_{\omega}\).
- Impeller speed \(\omega_{\mathrm{I}}\) for \(R_{\omega}<1\), and turbine speed \(\omega_{\mathrm{T}}\) for \(R_{\omega}>1\).

\section*{Capacity factor vector}

Vector of values of the block function's second dependent variable, the torque conversion capacity factor \(K\). Each capacity factor value corresponds to a speed ratio value.

From the drop-down list, choose units.
- If you choose the default capacity factor definition \(K\), the default units are radians/ second \(/ \sqrt{ }(\) newton-meters \()\left(\mathrm{rad} / \mathrm{s} /(\mathrm{N} * \mathrm{~m})^{\wedge} 0.5\right)\).
- If you choose the alternative capacity factor definition \(K^{*}\), the default units are newton-meters/(radians/second) \({ }^{2}\left(\mathrm{~N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})^{\wedge} 2\right)\).

\section*{Interpolation method}

Interpolates torque ratio and capacity factor functions between discrete relative velocity values within the range of definition. The default is Linear.

\section*{Extrapolation method}

Extrapolates torque ratio and capacity factor functions outside the range of definition. The default is Linear.

\section*{Dynamics}

\section*{Model transmission lag}

Select how to model transmission lag from input to output driveshaft. The default is Specify time constant and initial torque.
- No lag - Suitable for HIL simulation - Torque transfer is instantaneous.
- Specify time constant and initial value - Torque is transferred with a time lag. If you select this option, the panel changes from its default.

Time Constant and Initial Torque Ratio
Torque transmission time constant
Dynamic torque transfer time constant \(t_{\mathrm{c}}\). The default is 0.02 .
From the drop-down list, choose units. The default is seconds (s).

\section*{Initial turbine-to-impeller torque ratio}

Ratio of turbine torque \(\tau_{\mathrm{T}}\) to impeller torque \(\tau_{\mathrm{I}}\) at the start of the simulation.

\section*{Torque Converter Model}

The torque converter is a mechanism for transferring torque between impeller and turbine shafts. Because the coupling of I and T occurs by viscous action, the torque transfer depends on the difference \(\omega=\omega_{\mathrm{T}}-\omega_{\mathrm{I}} \neq 0\), or the speed ratio \(R_{\omega} \neq 1\). In normal operation, the two axes have different speeds, and the output axis speed never exactly reaches the input axis speed. The torque transfer is largest when \(R_{\omega} \rightarrow 0\) or \(\infty\), and shrinks as \(R_{\omega} \rightarrow 1\). Because \(R_{\omega}\) can never reach exactly one, a torque converter always transfers some torque.

\section*{Speed Ratio, Torque Ratio, and Capacity Factor}

You specify the torque ratio and the capacity factor of the torque converter as discrete functions of the speed ratio with tabular vector entries. The three vectors of the variable values must have the same length.
- The speed ratio \(R_{\omega}\) is the turbine angular speed divided by the impeller angular speed:
\(R_{\omega} \quad=\quad \omega_{\mathrm{T}} / \omega_{\mathrm{I}}\)
- The torque ratio \(R_{\tau}\) is the output (turbine) torque divided by the input (impeller) torque:
\[
R_{\tau} \quad=\quad \tau_{\mathrm{T}} / \tau_{\mathrm{I}}
\]
- The capacity factor \(K\) or \(K^{*}\) is defined in two ways for \(R_{\omega}<1\), with either the default or the alternative definition:
- Default, the input speed divided by the square root of the input torque:
\[
\begin{array}{lllll}
K & = & \omega_{\mathrm{I}} & / & \sqrt{ } \tau_{\mathrm{I}}
\end{array}
\]
- Alternative, the input torque divided by the square of the input speed:
\(K^{*} \quad=\quad \tau_{\mathrm{I}} \quad / \quad \omega_{\mathrm{I}}^{2}\)
- The capacity factor reference speed for \(R_{\omega}>1\) is \(\omega_{\mathrm{I}}\) by default. That is, the input speed \(\omega_{\mathrm{I}}\) is used in the ratio that defines either \(K\) or \(K^{*}\).

For \(R_{\omega}>1\), the alternative choice for reference speed is to replace \(\omega_{\mathrm{I}}\) by the output speed \(\omega_{\mathrm{T}}\) in this defining ratio.

The two dependent variables, \(R_{\tau}\) and \(K\), are functions of the independent variable \(R_{\omega}\). They specify the characteristics of the torque converter:
\(\begin{array}{ccccc}R_{\tau} & = & R_{\tau}\left(R_{\omega}\right) & K & =\end{array}\)

\section*{Continuation Near Speed Ratio of Unity}

If you do not specify capacity factor data for a speed ratio of 1 , the block uses a capacity factor value of \(10 * K_{\text {Max }}\), where \(K_{\text {Max }}\) is the maximum value in the specified capacity factor vector. The corresponding torque ratio is assumed to be 0 . For all other speed ratio values not explicitly specified in the lookup table data, the block uses the interpolation or extrapolation method selected in the block dialog box.

\section*{Instantaneous Torque Transfer}

When there is no time lag, the input impeller (I) and output turbine ( T ) torques are:
\[
\tau_{\mathrm{I}} \quad=\operatorname{sgn}\left(1 \quad-\quad \omega_{\mathrm{T}} / \omega_{\mathrm{I}}\right) \cdot\left[\omega_{\mathrm{I}} \quad / \quad K\right]^{2} \quad, \quad \tau_{\mathrm{T}} \quad=\quad \tau_{\mathrm{I}} \cdot R_{\tau},
\]
in normal operation (forward power flow).

\section*{Lagged Torque Transfer}

You can optionally include the effect of torque transmission time lag, caused by internal fluid flow and compressibility. Instead of \(\tau_{\mathrm{T}}\) and \(\tau_{\mathrm{I}}\) being instantaneously constrained to one another, a first-order time lag introduces a delayed response in the impeller torque:
\[
\left.t_{\mathrm{c}} \cdot\left(d \tau_{\mathrm{I}} / d t\right) \quad+\quad \tau_{\mathrm{I}} \quad=\quad \tau_{\mathrm{I}} \text { (steady } \quad \text { state }\right)
\]

The preceding instantaneous function of the capacity factor \(K\) determines the steady-state value of \(\tau_{\mathrm{I}}\).

\section*{Limitations}

The impeller shaft must always rotate in a positive direction. Simulation is not valid for \(\omega_{\text {I }}\) \(<0\).

If you drive the Torque Converter from a torque source, such as the Generic Engine, you must include an inertia in the source, to represent the engine, shaft inertia, or other source components. To ensure that the impeller starts by rotating in a positive direction, set the initial speed for this inertia to a positive value.

\section*{Torque Transmission Time Lag}

Torque converters lag in their response to changing input torque. By default, Torque Converter includes no time lag in its response. You can include a response lag by specifying a time constant. Time lag simulation increases model fidelity but reduces simulation performance. See "Adjust Model Fidelity".

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, for the Dynamics > Model transmission lag parameter, select No lag - Suitable for HIL simulation.

\section*{Reference}

Society of Automotive Engineers, Hydrodynamic Drive Test Code (Surface Vehicle Recommended Practice), SAE J643, May 2000.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Simscape Blocks
Disk Friction Clutch | Fundamental Friction Clutch | Generic Engine

\section*{Topics}
"Complete Vehicle Model"

\author{
"Vehicle with Four-Speed Transmission" \\ "Vehicle with Four-Wheel Drive" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks" \\ \section*{Introduced in R2011a}
}

\section*{Torque Noise Source}

Model zero-mean normally (Gaussian) distributed torque Library: Simscape / Driveline / Sources


\section*{Description}

The Torque Noise Source block generates zero-mean normally (Gaussian) distributed torque using the Random Number source in the Simscape Foundation library. The torque produced by the block depends on two factors:
- The noise power spectral density input to the block
- A random number seed that you control using the Repeatability and, as applicable, Seed parameters

The defining equation for the torque that the block generates is
\[
T=\sqrt{P S D / 2} \frac{N(0,1)}{\sqrt{h}},
\]
where:
- \(T\) is the output torque.
- \(\quad P S D\) is the single-sided noise power spectral density.
- \(N\) is a Gaussian random number with zero mean and standard deviation of one.
- \(h\) is the sampling interval.

\section*{Ports}

\section*{Input}

\section*{P - Single-sided noise power spectral density physical signal}

The power spectral density (PSD) of noise is the average noise power per unit of bandwidth, in ( \(\left.\mathrm{N}^{*} \mathrm{~m}\right)^{2} / \mathrm{Hz}\).

\section*{Conserving}

\section*{B - Base interface \\ mechanical rotational}

Mechanical rotational conserving port associated with the base interface.

\section*{F - Follower interface}
mechanical rotational
Mechanical rotational conserving port associated with the follower interface.

\section*{Parameters}

\section*{Sample time - Time step period and offset 1e-3 s (default)|[step, offset] s}

The values of the time step period and the initial time offset. If you specify a scalar value for step, the block assumes an offset value of 0 .To specify a nonzero value for the initial time offset, specify the parameter values using the vector [step, offset]. The offset value must be less than the step value and greater than or equal to zero.

\section*{Repeatability - Random number seed control}

Not repeatable (default)|Repeatable|Specify seed
The random number seed is the number that initializes the random number generator. The seed is 0 or a positive integer. To control the random number seed, set this parameter to:
- Not repeatable - The seed changes every time you simulate your model. The block resets the random seed using the MATLAB random number generator command:
seed \(=\) randi(2^32-1);
- Repeatable - The seed is the same random number at the start of every simulation. The block sets the value using the same MATLAB random number generator command used by the Not repeatable parameter.

When you add a Torque Noise Source block to your model from the Sources library, the block generates and stores a random value for the repeated seed. When you make a copy of the Torque Noise Source block from an existing block in a model, the copy generates a new random value for the repeated seed.
- Specify seed - The seed is a number that you specify using the Seed parameter. The Seed parameter is only available when you choose Specify seed for the Repeatability parameter.

\section*{Seed - Random number generation seed value}

0 (default)
The seed must be 0 or a positive integer. This parameter is only available when you select Specify seed for the Repeatability parameter.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\text {Coder }}{ }^{\mathrm{Tm}}\).

\section*{See Also}

\section*{Simscape Blocks}

Force Noise Source | Random Number | Rotational Velocity Noise Source | Sinusoidal Torque Source | Translational Velocity Noise Source

\section*{Functions}
randi

\section*{Introduced in R2016b}

\section*{Torsional Spring-Damper}

Rotational spring and damper coupling, with Coulomb friction, locking, and hard stops


\section*{Library}

Simscape / Driveline / Couplings \& Drives

\section*{Description}

The Torsional Spring-Damper block represents a dynamic element that imposes a combination of internally generated torques between the two connected driveshaft axes, the rod and the case. The complete torque includes these components:
- Linear damped spring
- Coulomb friction (including locking static friction)
- Hard-stop compliance

The second and third components are optional.
The Torsional Spring-Damper block uses the models of these blocks:
\begin{tabular}{|l|l|l|}
\hline Block & Contribution & Library \\
\hline \begin{tabular}{l} 
Loaded-Contact Rotational \\
Friction
\end{tabular} & Coulomb friction & \begin{tabular}{l} 
Simscape / Driveline / \\
Brakes \& Detents / \\
Rotational
\end{tabular} \\
\hline \begin{tabular}{l} 
Rotational Damper, \\
Rotational Spring
\end{tabular} & Damping & \begin{tabular}{l} 
Simscape / Foundation \\
Library / Mechanical / \\
Rotational Elements
\end{tabular} \\
\hline Rotational Spring & Spring & \\
\hline Rotational Hard Stop & Hard stop & \\
\hline
\end{tabular}

\section*{Assumptions and Limitations}
- Including hard-stop and Coulomb friction enhances model fidelity, but reduces simulation speed. For more information, see "Driveline Simulation Performance".

\section*{Ports}

\section*{Conserving}

\section*{C}

Mechanical rotational port associated with the slider that travels between stops installed on the case.

\section*{R}

Mechanical rotational port associated with the rod.

\section*{Parameters}

\section*{Spring-Damper}

\section*{Restoring spring stiffness}

Torsional spring stiffness \(k\) acting between connected driveshafts. The default is 1000 \(\mathrm{N} * \mathrm{~m} /\) rad. The value must be greater than zero.

\section*{Viscous friction coefficient}

Torsional damping \(\mu\) acting between the connected driveshafts. The default is 10 \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\). The value must be greater than or equal to zero.

\section*{Coulomb friction torque}

Constant kinetic friction torque \(\tau_{K}\) acting between connected driveshafts. The default is \(0 \mathrm{~N} * \mathrm{~m}\). The value must be greater than or equal to zero.

\section*{Ratio of static to kinetic friction}

Constant ratio \(R\) of static Coulomb friction torque \(\tau_{S}\) to kinetic Coulomb friction torque \(\tau_{K}\) acting between connected driveshafts. The default is 1.1 . The value must be greater than or equal to one.

\section*{Velocity tolerance}

Minimum relative angular speed \(\omega_{\text {Tol }}\) below which the two connected driveshafts can lock and rotate together. The default is \(0.001 \mathrm{rad} / \mathrm{s}\). The value must be greater than zero

\section*{Hard Stops}

\section*{Hard stop}

Include or exclude hard-stop torque by selecting one of these options:
- No hard stops - Suitable for HIL simulation - To enhance simulation speed by excluding the hard-stop torque contribution, select this default option.
- Compliant hard stops - To enhance model fidelity by including the hard-stop torque contribution, select this option. Selecting this option enables other parameters.

\section*{Upper bound}

Upper hard-stop angular displacement \(\delta_{+}\)from the zero-torque reference angle \(\phi=0\). The default is 10 deg . The value must be greater than \(\delta_{-}\).

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Lower bound}

Lower hard-stop angular displacement \(\delta_{\text {_ }}\) from the zero spring force reference angle \(\phi\) \(=0\). The default is -10 deg. The value must be less than \(\delta_{+}\).

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Contact stiffness}

Hard-stop stiffness \(k_{H S}\) applied if the relative angle \(\phi\) moves into the hard-stop region. The default is 1e6. \(\mathrm{N} * \mathrm{~m} / \mathrm{rad}\). The value must be greater than or equal to zero.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Contact damping}

Hard-stop damping \(\mu_{H S}\) applied if the relative angle \(\phi\) moves into the hard-stop region. The default is \(10 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\). The value must be greater than zero.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Hard stop model}

Select the hard-stop model:
- Stiffness and damping applied smoothly through transition region, damped rebound - Specify a transition region, in which the torque is scaled from zero. At the end of the transition region, the full stiffness and damping are applied. This model has damping applied on the rebound, but it is limited to the value of the stiffness torque. In this sense, damping can reduce or eliminate the torque provided by the stiffness, but never exceed it. All equations are smooth and produce no zero crossings.
- Full stiffness and damping applied at bounds, undamped rebound - This model has full stiffness and damping applied with impact at upper and lower bounds, with no damping on the rebound. Equations produce no zero crossings when velocity changes sign, but there is a position-based zero crossing at the bounds. Having no damping on rebound helps to push the slider past this position quickly. This model has nonlinear equations.
- Full stiffness and damping applied at bounds, damped rebound This model has full stiffness and damping applied with impact at upper and lower bounds, with damping applied on the rebound as well. Equations are switched linear, but produce position-based zero crossings. Use this hard stop model if simscape.findNonlinearBlocks indicates that this is the block that prevents the whole network from being switched linear.

Selecting Compliant hard stops for the Hard stop parameter enables this parameter.

\section*{Transition region}

Region where the torque is ramped up from zero to the full value. At the end of the transition region, the full stiffness and damping are applied. The default value is 0.001 rad.

Selecting Stiffness and damping applied smoothly through transition region, damped rebound for the Hard stop model enables this parameter.

\section*{Initial Conditions}

\section*{Initial deformation}

Initial deformation of the torsional spring relative to the zero-torque reference angle \(\phi=0\). The default is 0 deg.

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Hard Stops > Hard stop parameter default setting, No hard stops - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\author{
Simscape Blocks \\ Loaded-Contact Rotational Friction | Rotational Damper | Rotational Hard Stop | \\ Rotational Spring
}

\section*{Topics}
"Gear Coupling Control Using Clutches"
"Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"

Introduced in R2011a

\title{
Translational Damper
}

Faultable linear translational damper
Library: \(\quad\) Simscape / Driveline / Couplings \& Drives / Springs \& Dampers
- \({ }^{R}\) 工——。

Simscape / Foundation Library / Mechanical /
Translational Elements

\section*{Description}

The Translational Damper block models a faultable linear translational viscous damper. From the start of the simulation, the block uses the nominal damping coefficient. If you enable faults for the block, the damping coefficient changes in response to one or both of these triggers:
- Simulation time - A fault occurs at a specified time.
- Simulation behavior - If the magnitude of the translational acceleration exceeds a specified maximum value, the block increments the number of shocks by one. A fault occurs if the number of shocks exceeds a specified maximum number of shocks.

If a fault trigger event occurs, the block uses the faulted damping coefficient for the remainder of the simulation. You can program the block to issue a fault report as a warning or error message.

The defining equations are
\[
F=D v
\]
and
\[
v=v_{R}-v_{C},
\]
where
- \(F\) is the force transmitted through the damper.
- \(D\) is the damping (viscous friction) coefficient.
- \(v\) is the relative velocity.
- \(v_{R}\) and \(v_{C}\) are the absolute velocities of terminals R and C , respectively.

The positive block direction is from port R to port C . Therefore, the torque is positive if it acts in the direction from R to C .

\section*{Ports}

\section*{Conserving}

\section*{R - Rod interface}
mechanical translational
Mechanical translational conserving port associated with the rod interface.

\section*{C - Case interface}
mechanical translational
Mechanical translational conserving port associated with the case interface.

\section*{Parameters}

\section*{Main}

\section*{Damping coefficient - Damping coefficient for the no-fault condition 100 N/(m/s) (default)}

The oscillation-reducing force due to viscous friction that the block applies if no trigger events occur. Specify a value that is greater than or equal to zero.

\section*{Faults}

\section*{Enable faults - Fault mode capability} 0ff (default) | On

To enable the block to use a different damping coefficient based on the simulation time or when the magnitude of the translational acceleration exceeds the specified number of shocks, select On.

\section*{Dependencies}

Selecting On makes these parameters visible:
- Faulted damping coefficient
- Enable temporal fault trigger
- Enable behavioral fault trigger
- Reporting when fault occurs

\section*{Faulted damping coefficient - Damping coefficient for the fault condition} \(1 \mathrm{e} 6 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\) (default)

The oscillation-reducing force due to viscous friction that the block applies if a trigger event occurs. Specify a value that is greater than or equal to zero.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.

\section*{Enable temporal fault trigger - Fault trigger capability 0ff (default) | On}

To use the faulted damping coefficient starting at a specified time in the simulation, select On.

\section*{Dependencies}

This parameter is only visible if you select \(0 n\) for the Enable faults parameter.
Selecting \(0 n\) makes the Simulation time for fault event parameter visible.

\section*{Simulation time for fault event - Temporal fault trigger 5 s (default)}

Specify the time during the simulation that you want the block to start using the faulted damping coefficient.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter and On for the Enable temporal fault trigger parameter.

\author{
Enable behavioral fault trigger - Fault trigger capability Off (default) | On
}

To use the faulted damping coefficient when the number of sustained shocks exceeds a specified maximum number of shocks, select On.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.
Selecting On makes these parameters visible:
- Maximum permissible acceleration
- Maximum number of shocks

\section*{Maximum permissible acceleration - Behavioral fault trigger \(10 \mathrm{~m} / \mathrm{s}^{\wedge} 2\) (default)}

The maximum value that the magnitude of the translational acceleration can reach without causing the block to increment the number of sustained shocks.

\section*{Dependencies}

This parameter is only visible if you select \(0 n\) for the Enable faults parameter and \(0 n\) for the Enable behavioral fault trigger parameter.

Maximum number of shocks - Behavioral fault trigger 1 (default)

The maximum number of shocks that can be sustained without triggering the block to use the faulted damping coefficient.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter and On for the Enable behavioral fault trigger parameter.

\section*{Reporting when fault occurs - Fault reporting None (default) | Warning | Error}

Select your reporting preference for the fault condition.

\section*{Dependencies}

This parameter is only visible if you select On for the Enable faults parameter.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathbb{C o d e r}^{\mathrm{Tm}}\).
}

\author{
See Also \\ Nonlinear Rotational Damper | Nonlinear Translational Damper | Rotational Damper | Variable Rotational Damper | Variable Translational Damper \\ Introduced in R2016b
}

\section*{Translational Detent}

Double-sided, spring-loaded translational detent

\section*{Library}

Simscape / Driveline / Brakes \& Detents / Translational

\section*{Description}

The Translational Detent block represents a double-sided, spring-loaded translational detent with a ball and conical notch.

The detent slider slides horizontally over the detent case. These two parts develop a horizontal shear force between them. The inside of the slider is the conical notch. The detent case contains a vertical spring. The detent ball lies between the spring and the conical notch. With the block, you can model ball and angled notch detents with geometric and spring characteristics, peak force and notch width, or a table lookup. The model also includes viscous damping and kinetic friction between the slider and case. You can set the friction to zero.

\section*{Translational Detent Model}

The geometry of the ball-notch detent is shown in the following figure. As the conical slider slides horizontally over the case, the relative displacement \(x=x_{R}-x_{C}\) causes a horizontal shear force \(F\) to develop.

\begin{tabular}{|l|l|}
\hline\(b\) & Notch depth \\
\hline\(r\) & Ball radius \\
\hline\(\alpha\) & Notch half angle \\
\hline
\end{tabular}

Depending on your choice of parameterization, the shear force model is defined by geometric and spring parameters, by the peak force and notch width, or by a table lookup specifying relative displacement versus force.

\section*{Geometric and Spring Parameters}

The geometric and spring parameterization uses four regions to define the shear force. The following figure displays these regions.


Because the ball is spherical and the notch is symmetric, the horizontal force versus displacement function is symmetric about the origin. (See "Peak Force and Notch Width" on page 1-651.)
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Re \\
gio \\
\(\mathbf{n}\)
\end{tabular} & Ball Position and Contact Angle & Shear Force \\
\hline 1 & \begin{tabular}{l} 
Ball is outside conical notch. Contact \\
angle is vertical.
\end{tabular} & \begin{tabular}{l} 
Viscous damping and kinetic friction only. No spring \\
contribution.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Ball is entering notch, in contact with \\
notch corner. Contact angle rotates \\
from vertical.
\end{tabular} & \begin{tabular}{l} 
Spring, viscous damping, and kinetic friction \\
contributions. Peaks at transition from region 2 to \\
region 3.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Ball slides along face of notch. Contact \\
angle is constant.
\end{tabular} & \begin{tabular}{l} 
Force decreases as spring extends, but does not go to \\
zero (spring preload force).
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Ball moves from one face to the other. \\
Contact angle switches direction.
\end{tabular} & \begin{tabular}{l} 
Force switches direction. Shear reversal region width \\
controls how smooth this switch is.
\end{tabular} \\
\hline
\end{tabular}

\section*{Peak Force and Notch Width}

If you choose the peak force and notch width parameterization, the block ensures that the force-relative displacement curve provides a continuous force and force derivative over
the detent region. The peak forces are halfway between the detent center and detent edge, as shown in the following figure.


\section*{By Table Lookup}

With the table lookup parameterization, you can create an arbitrary function relating shear force to relative displacement. If you create such a function, consider the following best practices.

\section*{Energy Conservation}

If you want to ensure that the detent conserves energy, the total integral of the forcerelative displacement curve (area under the curve) must be zero.

\section*{Simulation Performance}

To stabilize simulation of the detent, avoid discontinuities in the force-relative displacement function. The most important requirement is to have a shear reversal region of nonzero width, analogous to region 4 in the geometric parameterization.

\section*{Limitations}
- The model does not account for inertia. Add mass terms externally to the R and C ports as required.
- If you use the peak force-notch width or the table lookup parameterization, the kinetic friction is independent of the detent normal force.

\section*{Ports}
\(\mathbf{R}\) and \(\mathbf{C}\) are translational conserving ports associated with the slider and case, respectively.

\section*{Parameters}

\section*{Detent Characteristics}

\section*{Parameterization}

Select how to specify the detent characteristics. The default is By peak force and notch width.
- By peak force and notch width - Specify detent characteristics by the peak shear force and the notch width.

\section*{Peak Force and Notch Width}

\section*{Peak force}

The peak shear force developed inside the detent. The default is 10.
From the drop-down list, choose units. The default is newtons (N).

\section*{Notch width}

The width of the region where the shear force develops. The default is 30 .
From the drop-down list, choose units. The default is millimeters (mm).
- By table lookup - Define the detent characteristics by one-dimensional table lookup based on the relative displacement between the slider and case. If you select this option, the panel changes from its default option.

\section*{By Table Lookup}

\section*{Relative displacement vector}

Specify the vector of input relative displacements that correspond to the values in Force vector. These two vectors must be of the same size. The
displacements must be specified in strictly increasing order. The default values are \(\left[\begin{array}{llllllllllllllllll}-15 & -12.3 & -7.6 & -1.1 & 1.1 & 7.6\end{array}\right.\).

From the drop-down list, choose units. The default is millimeters (mm).

\section*{Force vector}

Specify the vector of input values for the shear force that correspond to the values in Relative displacement vector. The default values are [0 0 -8.365-5.87 5.87 8.365 0 0].

From the drop-down list, choose units. The default is newtons (N).

\section*{Interpolation method}

Select one of these interpolation methods to approximate the output value when the input value is between two consecutive grid points:
- Linear - Select this, default, option to get the best performance.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.
- By geometry - Define the detent characteristics by ball-notch geometry and dynamics. If you select this option, the panel changes from its default option.

\section*{Geometric and Spring Parameters}

\section*{Ball diameter}

Specify the diameter of the ball. The default is 12 .
From the drop-down list, choose units. The default is millimeters (mm).

\section*{Notch angle}

Specify the full angle of the notch. Must be greater than 0 and less than or equal to 179 degrees. The default is 120 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Notch depth}

Specify the depth of the notch in the slider. Must be greater than zero. The default is 4.5 .

From the drop-down list, choose units. The default is millimeters (mm).

\section*{Preload force}

Specify the force to which the detent spring is preloaded. Must greater than or equal to 0 . The default is 15 .

From the drop-down list, choose units. The default is newtons (N).

\section*{Spring stiffness}

Specify the stiffness of the detent spring. Must be greater than 0 . The default is 3000 .

From the drop-down list, choose units. The default is newtons/meter ( \(\mathrm{N} / \mathrm{m}\) ).

\section*{Shear reversal region}

Specify the width of the region where the ball moves from one notch face to the other. Must be greater than 0 . The default is 0.1 .

From the drop-down list, choose units. The default is millimeters (mm).

\section*{Initial relative position}

The relative displacement of the slider and case when simulation starts. The default is 0.

From the drop-down list, choose units. The default is millimeters (mm).

\section*{Friction}

\section*{Viscous friction coefficient}

Specify the viscous friction coefficient for the ball-notch contact. Must be greater than or equal to 0 . The default is 0.1 .

From the drop-down list, choose units. The default is newtons/(meters/second) (N/ (m/ s) ).

\section*{Friction to peak force ratio}

Specify the kinetic friction coefficient for the ball-notch contact. Must be greater than or equal to 0 . The default is 0.01 .

The kinetic friction is this ratio multiplied by the peak shear force.

\section*{Friction velocity threshold}

Specify the relative velocity required for peak kinetic friction in the detent. Must be greater than 0 . The default is 0.05 .

From the drop-down list, choose units. The default is meters/second (m/s).

\author{
See Also \\ Loaded-Contact Translational Friction | Rotational Detent \\ \section*{Topics} \\ "Clutches, Clutch-Like Elements, and Coulomb Friction" "Stepping Mechanism with Detents" \\ Introduced in R2011b
}

\section*{Translational Power Sensor}

Mechanical sensor used to measure average or instantaneous translational power


\section*{Library}

Sensors

\section*{Description}

The block represents a sensor that measures the translational power change due to one or more driveline components connected between ports R and C . The power output can be an instantaneous or average value. Two averaging options are available: period and vibration averaging.

The instantaneous power is the product of the current velocity and force. Use the instantaneous power to analyze peak power transmission and identify heavily loaded components.

The time-averaged power is the integral of the instantaneous power over one sample period, divided by that period. For simulation times smaller than the sample period, the average power is zero. The power is constant for each sample period.

The vibration-averaged power is the integral of the power over one vibration period, divided by that period. The vibration period is the time between two consecutive crossings from negative to positive velocity values. Use this averaging method only for oscillations with velocity passing through zero. If the vibration has a variable frequency, the averaging period can change. For simulation times smaller than the vibration period, the average power is zero. The power output is constant for each vibration period.

\section*{Parameters}

\section*{Measurement Type}

Select either instantaneous or average power measurement. The default type is Instantaneous Power.
- Instantaneous power - Output the power measured for the current time step.
- Average power over a specified period-Output the power averaged over a fixed time period.

\section*{Averaging period}

Enter the time period used to compute the average power. Typical values include the cycle length of a reciprocating device or the actuation force.

The default value is 1 . The default unit is \(s\).
- Average power over a vibration-Output the power averaged over one vibration period.

\section*{Maximum vibration frequency}

Enter the maximum vibration frequency over which to average the power. Very high values can reduce simulation speed. Very low values can result in lower power measurements.

The default value is 1000 . The default unit is Hz .

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline P & Physical signal output port for translational power \\
\hline S & Mechanical translational conserving port associated with driving source \\
\hline R & \begin{tabular}{l} 
Mechanical translational conserving port associated with loaded driveline \\
components
\end{tabular} \\
\hline C & \begin{tabular}{l} 
Mechanical translational conserving port associated with case holding \\
loaded driveline components
\end{tabular} \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using MATLAB® \(\operatorname{Coder}^{\text {TM }}\).
}

\section*{See Also}

Rotational Power Sensor

Introduced in R2013a

\section*{Translational Velocity Noise Source}

Produce zero-mean normally (Gaussian) distributed translational velocity Library: Simscape / Driveline / Sources


\section*{Description}

The Translational Velocity Noise Source block generates zero-mean normally (Gaussian) distributed translational velocity using the Random Number source in the Simscape Foundation library. The translational velocity produced by the block depends on two factors:
- The noise power spectral density input to the block
- A random number seed that you control using the Repeatability and, as applicable, Seed parameters

The defining equation for the translational velocity that the block generates is
\[
v=\sqrt{P S D / 2} \frac{N(0,1)}{\sqrt{h}}
\]
where:
- \(v\) is the output translational velocity.
- \(P S D\) is the single-sided noise power spectral density.
- \(N\) is a Gaussian random number with zero mean and standard deviation of one.
- \(h\) is the sampling interval.

\section*{Ports}

\section*{Input}

\section*{P - Single-sided noise power spectral density physical signal}

The power spectral density (PSD) of noise is the average noise power per unit of bandwidth, in \((\mathrm{m} / \mathrm{s})^{2} / \mathrm{Hz}\).

\section*{Conserving}

\section*{B - Base interface \\ mechanical translational}

Mechanical translational conserving port associated with the base interface.

\section*{F - Follower interface \\ mechanical translational}

Mechanical translational conserving port associated with the follower interface.

\section*{Parameters}

\section*{Sample time - Time step period and offset} 1e-3 s (default)|[step, offset] s

The values of the time step period and the initial time offset. If you specify a scalar value for step, the block assumes an offset value of 0 .To specify a nonzero value for the initial time offset, specify the parameter values using the vector [step, offset]. The offset value must be less than the step value and greater than or equal to zero.

\section*{Repeatability - Random number seed control \\ Not repeatable (default)|Repeatable|Specify seed}

The random number seed is the number that initializes the random number generator. The seed is 0 or a positive integer. To control the random number seed, set this parameter to:
- Not repeatable - The seed changes every time you simulate your model. The block resets the random seed using the MATLAB random number generator command:
```

seed = randi(2^32-1);

```
- Repeatable - The seed is the same random number at the start of every simulation. The block sets the value using the same MATLAB random number generator command used by the Not repeatable parameter.

When you add a Translational Velocity Noise Source block to your model from the Sources library, the block generates and stores a random value for the repeated seed. When you make a copy of the Translational Velocity Noise Source block from an existing block in a model, the copy generates a new random value for the repeated seed.
- Specify seed - The seed is a number that you specify using the Seed parameter. The Seed parameter is only available when you choose Specify seed for the Repeatability parameter.

\section*{Seed - Random number generation seed value}

\section*{0 (default)}

The seed must be 0 or a positive integer. This parameter is only available when you select Specify seed for the Repeatability parameter.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® Coder \(^{\mathrm{TM}}\).

\author{
See Also
}

\section*{Simscape Blocks}

Force Noise Source | Random Number | Rotational Velocity Noise Source | Sinusoidal Translational Velocity Source | Torque Noise Source

\section*{Functions}
randi

\section*{Introduced in R2016b}

\section*{Unbalanced Load}

Load with angle-dependent rotational inertia


\section*{Library}

Simscape / Driveline / Inertias \& Loads

\section*{Description}

This block models the effects of a load whose rotational inertia varies instantaneously with the rotation angle. Examples include the wobbling of a spinning axle and shaking of an off-center rotating machine. You can specify the load inertia in terms of its rotation path or as an angle-inertia lookup table.

The block provides two rotation path parameterizations. One assumes circular motion of the unbalanced load. The other assumes elliptical motion. In each case, the distance between the unbalanced load and the main rotation axis varies with the rotation angle. The varying distance causes the moment of inertia, given by the parallel-axis theorem, to vary during rotation:
\[
I(\theta)=I_{0}+M r^{2}(\theta)
\]
where:
- \(I\) is the moment of inertia about the main rotation axis.
- \(I_{0}\) is the moment of inertia about the intrinsic rotation axis of the unbalanced load.
- \(M\) is the total mass of the unbalanced load.
- \(r\) is the distance between the unbalanced load and the main rotation axis.

The angle dependence of the moment of inertia leads to an angle dependence of the inertial torque acting on the unbalanced load:
\[
T_{I}(\theta)=I(\theta) \dot{\omega},
\]
where:
- \(T_{\mathrm{I}}\) is the inertial torque.
- \(\omega\) is the angular velocity of the load.

If the load moves in a circular path, its distance to the main rotation axis is given by
\[
r(\theta)=\sqrt{\left(r_{C} \cos (\theta)+r_{A}\right)^{2}+\left(r_{C} \sin (\theta)\right)^{2}}
\]
where:
- \(r_{\mathrm{A}}\) is the distance between the main rotation axis and the offset rotation axis.
- \(r_{\mathrm{C}}\) is the radius of the circular path.


\section*{Circular Rotation Path}

If the load moves in an elliptical path, its distance to the main rotation axis is given by
\[
r(\theta)=\sqrt{\left(r_{\|} \cos (\theta)+r_{A}\right)^{2}+\left(r_{\perp} \sin (\theta)\right)^{2}}
\]
where:
- \(r_{\|}\)is the radius of the elliptical path in line with the distance from the main rotation axis.
- \(r_{\perp}\) is radius of the elliptical path perpendicular to the distance from the main rotation axis.


\section*{Elliptical Rotation Path}

\section*{Ports}

The block has one conserving rotational port. This port identifies the location of the unbalanced load in a driveline model.

\section*{Parameters}

\section*{Inertia}

\section*{Parameterization}

Choice of parameterization for modeling the moment of inertia of the unbalanced load. Options include Circular rotation, Elliptical rotation, and By table lookup. The default setting is Circular rotation.

Select Circular rotation or Elliptical rotation to parameterize the load inertia in terms of the load's rotation path. Select By table lookup to provide the load inertia directly across its rotation path.

\section*{Moment of inertia about own axis}

Moment of inertia about the intrinsic rotation axis of the unbalanced load. This moment of inertia is assumed constant throughout simulation. This parameter
appears only when Parameterization is set to Circular rotation. The default value is \(1 \mathrm{~kg}^{*} \mathrm{~m} 2\).

\section*{Mass}

Mass of the unbalanced load. This parameter appears only when Parameterization is set to Circular rotation. The default value is 1 kg .

\section*{Distance from axis to center of rotation}

Distance between the main rotation axis and the center of the rotation path. This parameter appears only when Parameterization is set to Circular rotation. The default value is 0.01 m .

\section*{Radius of rotation}

Radius of the circular rotation path traversed by the unbalanced load. This parameter appears only when Parameterization is set to Circular rotation. The default value is 0.01 m .

\section*{Radius of rotation inline with distance from axis}

Length of the semimajor axis of the elliptical rotation path traversed by the unbalanced load. The semimajor axis is in line with the line segment joining the main rotation axis and the elliptical rotation center. This parameter appears only when Parameterization is set to Elliptical rotation. The default value is 0.01 m .

\section*{Radius of rotation perpendicular to distance from axis}

Length of the semiminor axis of the elliptical rotation path traversed by the unbalanced load. The semiminor axis is perpendicular to the line segment joining the main rotation axis and the elliptical rotation center. This parameter appears only when Parameterization is set to Elliptical rotation. The default value is 0.005 m .

\section*{Angle vector}

Array of angular positions at which to specify the load inertia. The block calculates the load inertia between the angles specified using linear interpolation. This parameter appears only when Parameterization is set to By table lookup. The default vector is [0, pi,3*pi/2] rad.

\section*{Inertia vector}

Array of load inertias about the intrinsic rotation axis of the load. Each inertia corresponds to an angle specified in the Angle vector parameter. This parameter appears only when Parameterization is set to By table lookup. The default vector is \([1,10,1] \mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Initial Conditions}

\section*{Initialization}

Choice of parameter through which to specify the initial state of the unbalanced load. Options include Specify angular momentum and Specify angular velocity.

\section*{Initial angular momentum}

Angular momentum of the unbalanced load at the start of simulation. This parameter appears only when the Initialization parameter is set to Specify angular momentum. The default value is \(0 \mathrm{~m}^{\wedge} 2^{*} \mathrm{~kg} / \mathrm{s}\).

\section*{Initial angular velocity}

Angular velocity of the unbalanced load at the start of simulation. This parameter appears only when the Initialization parameter is set to Specify angular velocity. The default value is \(0 \mathrm{rad} / \mathrm{s}\).

\section*{Initial angle}

Angular position of the unbalanced load at the start of simulation. The initial angle determines the initial inertia of the unbalanced load. The default value is 0 rad.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Variable Inertia | Variable Mass

\section*{Introduced in R2015b}

\section*{Unidirectional Clutch}

Clutch that transmits power in a single direction Library: Simscape / Driveline / Clutches


\section*{Description}

The Unidirectional Clutch block models an ideal one-way clutch based on a coupled ringhub. It transmits torque when the relative velocity of hub and ring becomes positive or negative, depending on how you set the transmission direction. For model details, see "Equations" on page 1-669.

\section*{Equations}

The figure displays the geometry of the unidirectional clutch. The table summarizes the unidirectional clutch variables.


If locked, the clutch transmits torque from the hub to the ring. If unlocked, the clutch transmits no torque. The clutch does not have a state of being unlocked but engaged (transmitting torque). The relative angular velocity (slip), \(\omega\), is the angular velocity of hub, \(\omega_{H}\), relative to the velocity of the ring, \(\omega_{R}\), that is, \(\omega=\omega_{H}-\omega_{R}\).

The Unidirectional Clutch block implements an ideal model of a one-way clutch and does not include any internal dynamics, such as the rollers and springs.

\section*{Locking Condition}

The transmission direction determines the condition for locking.
- If you choose transmission for the positive direction, the clutch locks if \(\omega=\omega_{\mathrm{H}}-\omega_{\mathrm{R}} \geq\) 0 and becomes zero from positive values. The slip \(\omega\) then remains zero, and the clutch transfers torque.

If the driveline dynamics then causes \(\omega<0\) later in the simulation, the clutch abruptly unlocks and stops transferring torque.
- If you choose transmission for the negative direction, the clutch locks if \(\omega=\omega_{\mathrm{H}}-\omega_{\mathrm{R}} \leq\) 0 and becomes zero from negative values. The slip \(\omega\) then remains zero, and the clutch transfers torque.

If the driveline dynamics then causes \(\omega>0\) later in the simulation, the clutch abruptly unlocks and stops transferring torque.

For example, locking and torque transfer in the positive direction as follows.
- When the hub rotates faster than the ring \((\omega>0)\), the small gap prearranged between the hub and the ring is cleared. The spring-loaded rollers wedge between the hub and the ring, causing the two to contact, lock, and rotate together; \(\omega\) resets to zero. (The rotation convention in the figure is clockwise.)
- If the ring rotates faster than the hub \((\omega<0)\), the rollers are pushed out of contact and the clutch unlocks.

For a clutch schematic, see "Equations" on page 1-669.

\section*{Power Dissipated by the Clutch}

The unidirectional clutch is ideal and does not dissipate power. Either the clutch is unlocked and applies no kinetic friction, or it is locked (no slip) and applies only static friction.

\section*{Ports}

\section*{Conserving}

H - Hub velocity
mechanical rotational
Velocity of the hub driveshaft axis.
R-Ring velocity
mechanical rotational
Velocity of the ring driveshaft axis.

\section*{Parameters}

Transmission direction - Relative rotation direction
From hub to ring for positive rotation (default)|From hub to ring for negative rotation

Relative rotation direction for which the clutch locks and transfers torque.

\author{
Initial state - Clutch initial state \\ Unlocked (default) | Locked
}

Clutch state at the start of simulation. The clutch can be in one of two states, locked and unlocked. A locked clutch constrains the base and follower shafts to spin at the same velocity, that is, as a single unit. An unlocked clutch allows the two shafts to spin at different velocities, resulting in slip between the clutch plates.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Dog Clutch | Fundamental Friction Clutch

\section*{Topics}
"Ratchet Leadscrew Mechanism"
"Gear Coupling Control Using Clutches"

\section*{Introduced in R2011a}

\section*{Universal Joint}

Rotational coupling between two driveline shafts


\section*{Library}

Couplings \& Drives

\section*{Description}

This block represents a rotational coupling between two driveline shafts. The coupling transfers torque between the shafts so they spin as a unit under an applied load. Two rotational degrees of freedom, internal to the coupling, allow the shafts to connect at an angle. This intersection angle varies according to the physical signal input from port A. Compliance, modeled as a parallel spring-damper set, allows the coupling to deform under load.

You can use the Universal Joint block as a connection between two rotational driveline components-for example, between the driving and driven shafts in an automobile drive train.


The ratio of the shaft angular velocities depends on two parameters: the intersection angle between the two shafts and the rotation angle of the base shaft. A physical signal
input provides the intersection angle while a dialog box parameter provides the initial base shaft angle. These two angles fix the ratio of the two shaft angular velocities according to the nonlinear equation:
\[
\omega_{F}=\frac{\cos (A)}{1-\sin ^{2}(A) \cdot \cos ^{2}\left(\theta_{B}\right)} \omega_{B}
\]
where:
- \(\omega_{F}\) is the angular velocity of the follower shaft about its length axis.
- \(\omega_{B}\) is the angular velocity of the base shaft about its length axis.
- \(\theta_{B}\) is the rotation angle of the base shaft about its length axis.
- \(A\) is the intersection angle between base and follower shafts about the base shaft pin.

The two schematics in the figure illustrate the equation parameters. In each schematic, the left shaft represents the base shaft, while the right shaft represents the follower shaft. The right schematic shows the coupling seen in the left schematic after the shafts spin \(90^{\circ}\) about their length axes (dashed line segments).


In the figure, the intersection angle is the angle between the two shafts about the pin of the base shaft. The absolute value of this angle must fall in the range \(0 \leq A<M a x i m u m\) intersection angle. The base shaft angle is the angle of the base shaft about its length axis. The base shaft angle is also the time-integral of the base shaft angular velocity, \(\omega_{B}\).

\section*{Parameters}

\section*{Maximum joint angle}

Maximum intersection angle the joint allows. This angle measures the rotation between base and follower shafts about the base shaft pin. The value of this angle must fall in the range \(0 \leq \mathrm{A}<\mathrm{pi} / 2\). From the drop-down list, select a physical unit. The default value is pi/4 rad.

\section*{Joint stiffness}

Linear spring stiffness of the joint. The spring stiffness accounts for elastic energy storage in the joint due to material compliance. In the drop-down list, select a physical unit. The default value is \(1 \mathrm{e} 6 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}\).

\section*{Joint damping}

Linear damping coefficient of the joint. The damping coefficient accounts for energy dissipation in the joint due to material compliance. In the drop-down list, select a physical unit. The default value is \(1 \mathrm{e} 3 \mathrm{~N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial base shaft angle}

Rotation angle of the base shaft about its length axis at time zero. From the dropdown list, select a physical unit. The default value is 0 rad .

\section*{Initial torque from base to follower shaft}

Torque that the base shaft transfers to the follower shaft at time zero. This torque determines the initial state of material compliance at the joint. Set this value to greater than zero to preload the shafts with torque. Changing this value alters the initial transient response due to material compliance. Select a physical unit. The default value is \(0 \mathrm{~N}^{*} \mathrm{~m}\).

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline B & Conserving rotational port associated with the base shaft \\
\hline F & Conserving rotational port associated with the follower shaft \\
\hline A & Physical signal input port for the intersection angle \\
\hline
\end{tabular}

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Belt Drive | Belt Pulley | Chain Drive | Flexible Shaft | Rope Drum \\ Introduced in R2013b
}

\section*{Variable Inertia}

Time-varying inertia specified as physical signal input


\section*{Library}

Inertias \& Loads

\section*{Description}

This block models the effects of a time-varying inertia. Components with variable inertia include satellites unfolding arrays of solar panels. A physical signal input port provides the instantaneous inertia at each time step throughout simulation. To minimize solver errors, avoid discontinuities and abrupt changes in the input signal.

As the component inertia changes, so does the inertial torque acting on that component:
\[
T_{I}=I \dot{\omega},
\]
where:
- \(T_{\mathrm{I}}\) is the inertial torque.
- \(I\) is the variable inertia.
- \(\omega\) is the angular velocity of the inertia.

The physical signal input saturates at the minimum inertia specified in the block dialog box. Whenever the input falls below the minimum inertia, the block performs its calculations on the minimum inertia instead. The inertial torque becomes:
\[
T_{I}=I_{M i n} \dot{\omega},
\]
where:
- \(I_{\text {Min }}\) is the minimum inertia allowed.

The angular momentum of the variable inertia is conserved. In the absence of external torques, a decrease in the moment of inertia leads to a proportional increase in angular velocity. The angular momentum remains constant until a net external torque causes it to change.

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

The block has one conserving rotational port and one physical signal input port. The conserving rotational port identifies the driveline component whose inertia varies with time. The physical signal input port provides the means to specify the inertia as a function of time.

\section*{Parameters}

\section*{Minimum inertia}

Lowest value that the variable inertia can take on during simulation. The physical signal input saturates at this value. If the input falls below the minimum inertia, it is set equal to the minimum inertia value. The default value is \(0.1 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\).

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using MATLAB® \(\operatorname{Coder}^{\text {TM }}\).
}

\section*{See Also}

Unbalanced Load | Variable Mass

Introduced in R2015b

\section*{Variable Mass}

Time-varying mass specified as physical signal input


\section*{Library}

Inertias \& Loads

\section*{Description}

This block models the effects of a time-varying mass. Components with variable mass include fuel tanks with progressively lower fuel contents. A physical signal input port provides the instantaneous mass at each time step throughout simulation. To minimize solver errors, avoid discontinuities and abrupt changes in the input signal.

As the component mass changes, so does the inertial force acting on that component:
\[
F_{I}=m \dot{v}
\]
where:
- \(F_{I}\) is the inertial force.
- \(m\) is the variable mass.
- \(v\) is the velocity of the mass.

The physical signal input saturates at the minimum mass specified in the block dialog box. Whenever the input falls below the minimum mass, the block performs its calculations on the minimum mass instead. The inertial force becomes:
\[
F_{I}=m_{M i n} \dot{v}
\]
where:
- \(m_{\text {Min }}\) is the minimum mass allowed.

The linear momentum of the variable mass is conserved. In the absence of external forces, a decrease in mass leads to a proportional increase in linear velocity. The linear momentum remains constant until a net external force causes it to change.

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

The block has one conserving translational port and one physical signal input port. The conserving translational port identifies the driveline component whose mass varies with time. The physical signal input port provides the means to specify the mass as a function of time.

\section*{Parameters}

\section*{Minimum mass}

Lowest value that the variable mass can take on during simulation. The physical signal input saturates at this value. If the input falls below the minimum mass, it is set equal to the minimum mass value. The default value is 0.1 kg .

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
}

\section*{See Also}

Unbalanced Load | Variable Inertia

Introduced in R2015b

\section*{Variable Ratio Transmission}

Dynamic gearbox with variable and controllable gear ratio, transmission compliance, and friction losses


\section*{Library}

Simscape / Driveline / Couplings \& Drives

\section*{Description}

The Variable Ratio Transmission block represents a gearbox that dynamically transfers motion and torque between the two connected driveshaft axes, base and follower.

Ignoring the dynamics of transmission compliance, the driveshafts are constrained to corotate with a variable gear ratio that you control. You can choose whether the follower axis rotates in the same or opposite direction as the base axis. If they rotate in the same direction, \(\omega_{\mathrm{F}}\) and \(\omega_{\mathrm{B}}\) have the same sign. If they rotate in opposite directions, \(\omega_{\mathrm{F}}\) and \(\omega_{\mathrm{B}}\) have opposite signs.

Transmission compliance introduces internal time delay between the axis motions. Therefore, unlike a gear, a variable ratio transmission does not act as a kinematic constraint. You can also control torque loss caused by transmission and viscous losses. For model details, see "Variable Ratio Transmission Model" on page 1-684.

\section*{Ports}

B and F are rotational conserving ports representing, respectively, the base and follower driveshafts.

You specify the unitless variable gear ratio \(g_{\mathrm{FB}}(t)\) as a function of time at the physical signal input at port r. If the signal value becomes zero or negative, the simulation stops with an error.

\section*{Variable Ratio Transmission Model}

\section*{Ideal Motion and Torque Transfer}

Variable Ratio Transmission is a dynamical mechanism for transferring motion and torque between base and follower.

If the relative compliance \(\phi\) between the axes is absent, the block is equivalent to a gear with a variable ratio \(g_{\mathrm{FB}}(t)\). Such a gear imposes a time-dependent kinematic constraint on the motions of the two driveshafts:
\(\omega_{\mathrm{B}} \quad=\quad \pm g_{\mathrm{FB}}(t) \cdot \omega_{\mathrm{F}} \quad, \quad \tau_{\mathrm{F}} \quad=\quad \pm g_{\mathrm{FB}}(t) \cdot \tau_{\mathrm{B}}\)

However, Variable Ratio Transmission does include compliance between the axes. Dynamical motion and torque transfer replace the kinematic constraint, with a nonzero \(\phi\) that dynamically responds through base compliance parameters \(k_{\mathrm{p}}\) and \(k_{\mathrm{v}}\) :
\[
\begin{array}{ccccc}
d \phi / d t & = & \pm g_{\mathrm{FB}}(t) \cdot \omega_{\mathrm{F}} & - & \omega_{\mathrm{B}}
\end{array}
\]
\begin{tabular}{lllll}
\(\tau_{\mathrm{B}}\) & \(=\) & \(-k_{\mathrm{p}} \phi\) & - & \(k_{\mathrm{v}} d \phi / d t\)
\end{tabular}
\(\pm g_{\mathrm{FB}}(t) \cdot \tau_{\mathrm{B}} \quad+\quad \tau_{\mathrm{F}} \quad-\quad \tau_{\text {loss }} \quad=\quad 0\)
\(\tau_{\text {loss }}=0\) in the ideal case.

\section*{Estimating Compliance Parameters}
- You can estimate the base angular compliance \(k_{\mathrm{p}}\) from the transmission time constant \(t_{\mathrm{c}}\) and inertia \(J\) : \(k_{\mathrm{p}}=J\left(2 \Pi / t_{\mathrm{c}}\right)^{2}\).
- You can estimate the base angular velocity compliance \(k_{\mathrm{v}}\) from the transmission time constant \(t_{\mathrm{c}}\), inertia \(J\), and damping coefficient \(C\) : \(k_{\mathrm{v}}=\left(2 C t_{\mathrm{c}}\right) / 2 \Pi=2 C \sqrt{ }\left(\mathrm{~J} / k_{\mathrm{p}}\right)\).

\section*{Nonideal Torque Transfer and Losses}

With nonideal torque transfer, \(\tau_{\text {loss }} \neq 0\). Losses in the Variable Ratio Transmission are modeled similarly to how losses are modeled in nonideal gears. For general information on nonideal gear modeling, see "Model Gears with Losses".

In a nonideal gearbox, the angular velocity and compliance dynamics are unchanged. The transferred torque and power are reduced by:
- Coulomb friction (for example, between belt and wheel, or internal belt losses due to stretching) characterized by an efficiency \(\eta\).
- Viscous coupling of driveshafts with bearings, parametrized by viscous friction coefficients \(\mu\).
\(\tau_{\text {loss }}=\tau_{\text {Coul }} \cdot \tanh \left(4 \omega_{\text {out }} / \omega_{\text {th }}\right)+\mu_{\mathrm{B}} \omega_{\mathrm{B}}+\mu_{\mathrm{F}} \omega_{\mathrm{F}}, \tau_{\text {Coul }}=\left|\tau_{\mathrm{F}}\right| \cdot(1-\eta)\)
When the angular velocity changes sign, the hyperbolic tangent regularizes the sign change in the Coulomb friction torque.
\begin{tabular}{|l|l|l|}
\hline Power Flow & Power Loss Condition & Output Driveshaft \(\boldsymbol{\omega}_{\text {out }}\) \\
\hline Forward & \(\omega_{\mathrm{B}} \tau_{\mathrm{B}}>\omega_{\mathrm{F}} \tau_{\mathrm{F}}\) & Follower, \(\omega_{\mathrm{F}}\) \\
\hline Reverse & \(\omega_{\mathrm{B}} \tau_{\mathrm{B}}<\omega_{\mathrm{F}} \tau_{\mathrm{F}}\) & Base, \(\omega_{\mathrm{B}}\) \\
\hline
\end{tabular}

\section*{Meshing Efficiency}

The friction loss represented by efficiency \(\eta\) is fully applied only if the absolute value of the follower angular velocity \(\omega_{\mathrm{F}}\) is greater than a velocity threshold \(\omega_{\mathrm{th}}\).

If this absolute velocity is less than \(\omega_{\text {th }}\), the actual efficiency is automatically regularized to one at zero velocity.

\section*{Parameters}

\section*{Main}

\section*{Output shaft rotates}

From the drop-down list, choose how the output driveshaft rotates relative to the input driveshaft. The default is In same direction as input shaft.

\section*{Compliance}

\section*{Transmission stiffness at base (B)}

Reciprocal of transmission angular compliance \(k_{p}\), angular displacement per unit torque, measured at the base. The default is 30000 .

From the drop-down list, choose units. The default is newton-meters/radian ( \(\mathrm{N} * \mathrm{~m}\) / rad).

\section*{Transmission damping at base (B)}

Reciprocal of transmission angular compliance damping \(k_{\mathrm{v}}\), angular speed per unit torque, measured at the base. The default is 0.05 .

From the drop-down list, choose units. The default is newton-meters/(radian/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Initial input torque at base (B)}

Torque applied at the base driveshaft at the start of simulation \((t=0)\). The default is 0.

From the drop-down list, choose units. The default is newton-meters ( \(\mathrm{N} * \mathrm{~m}\) ).

\section*{Transmission Losses}

\section*{Losses model}

Select how to implement friction losses from nonideal torque transfer. The default is No losses.
- No losses - Suitable for HIL simulation - Torque transfer is ideal.
- Constant efficiency - Transfer of torque across gearbox is reduced by a constant efficiency \(\eta\) satisfying \(0<\eta \leq 1\). If you select this option, the panel changes from its default.

\section*{Constant Efficiency}

\section*{Efficiency}

Effective torque transfer efficiency \(\eta\) between the base and follower driveshafts.

\section*{Follower angular velocity threshold}

Absolute angular velocity threshold \(\omega_{\text {th }}\) above which full efficiency loss is applied, for follower velocity \(\omega_{\mathrm{F}}\).

From the drop-down list, choose units. The default is radians/second (rad/s).

\section*{Viscous Losses}

\section*{Viscous friction coefficients at base (B) and follower (F)}

Vector of viscous damping coefficients [ \(\mu_{\mathrm{B}} \mu_{\mathrm{F}}\) ] applied at the base and follower driveshafts, respectively. The default is [ 00 ].

From the drop-down list, choose units. The default is newton-meters/(radian/second) ( \(\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) ).

\section*{Real-Time Simulation}

\section*{Hardware-in-the-Loop Simulation}

For optimal simulation performance, use the Transmission Losses > Losses model parameter default setting, No losses - Suitable for HIL simulation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\section*{See Also}

\section*{Simscape Blocks}

Simple Gear | Torque Converter

\author{
Topics \\ "Gear Coupling Control Using Clutches" \\ "Variable Ratio Gear" \\ "Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
}

\section*{Introduced in R2011a}

\section*{Variable Rotational Damper}

Rotational damper with variable damping coefficient


\section*{Library}

Couplings \& Drives/Springs \& Dampers

\section*{Description}

The block represents a rotational viscous damper with a variable damping coefficient. A physical signal input port provides the magnitude of the damping coefficient. The magnitude of the damping torque is equal to the product of the physical signal input and the relative angular velocity between the two rotational conserving ports, R and C. A minimum damping coefficient prevents non-physical negative damping values.

The damping torque satisfies the following expression:
\[
T=\left\{\begin{array}{cc}
B \cdot \omega & B \geq B_{\min } \\
B_{\min } \cdot \omega & B<B_{\min }
\end{array}\right.
\]

The parameters are:
- \(T\) - Torque transmitted through damper
- \(B-\) Viscous damping coefficient
- \(\omega\) - Relative angular velocity measured between the two rotational conserving ports according to \(\omega=\omega_{R}-\omega_{C}\)
- \(\omega_{R}\) - Angular velocity of rotational conserving port R
- \(\omega_{C}\) - Angular velocity of rotational conserving port C

The block applies equal and opposite damping torques on the rotational conserving ports. The sign of the damping torque acting on port R is equal to the sign of the relative
angular velocity. A positive relative angular velocity corresponds to a positive damping torque acting on port R , and a negative damping torque of equal magnitude acting on port C.

\section*{Assumptions and Limitations}
- The block represents only viscous damping
- The value of the damping coefficient must be equal to or greater than zero.

\section*{Ports}

B
Physical signal input port representing the variable damping coefficient.
C
Rotational conserving port.
R
Rotational conserving port.

\section*{Parameters}

\section*{Minimum damping coefficient}

Minimum value allowed for the damping coefficient. The physical signal input saturates below this level. The parameter must be greater than or equal to zero. The default value is \(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{Tm}}\).

\section*{See Also}

Nonlinear Rotational Damper | Nonlinear Translational Damper | Rotational Damper | Translational Damper | Variable Translational Damper

Introduced in R2013a

\section*{Variable Rotational Spring}

Rotational spring with variable spring stiffness


\section*{Library}

Couplings \& Drives/Springs \& Dampers

\section*{Description}

The block represents a torsional spring with variable spring stiffness. A physical signal input port provides the value of the variable spring stiffness. The magnitude of the spring torque is equal to the product of the physical signal input and the relative angular displacement between the two rotational conserving ports. A minimum spring rate value prevents non-physical values.

The rotational spring torque satisfies the following expression:
\[
T=\left\{\begin{array}{cc}
K \cdot \theta & K \geq K_{\min } \\
K_{\min } \cdot \theta & K<K_{\min }
\end{array}\right.
\]

The parameters are:
- \(T\) - Torque transmitted through the spring
- \(K-\) Spring rate (stiffness)
- \(K_{\min }\) - Minimum allowable spring rate (stiffness)
- \(\theta\) - Relative angular displacement measured between the two rotational conserving ports according to \(\theta=\theta_{\text {init }}+\theta_{R}-\theta_{C}\)
- \(\theta_{\text {init }}\) - Initial angular deformation between the two rotational conserving ports
- \(\theta_{R}\) - Absolute angular displacement of rotational conserving port R
- \(\theta_{C}-\) Absolute angular displacement of rotational conserving port \(C\)

The block applies equal and opposite spring torques on the two rotational conserving ports. The sign of the spring torque acting on port R is equal to the sign of the relative angular velocity. A positive relative angular velocity corresponds to a positive damping torque acting on port R , and a negative damping torque of equal magnitude acting on port C.

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Assumptions and Limitations}

The value of the spring rate must be greater than zero.

\section*{Ports}

\section*{K}

Physical signal input port representing the variable spring stiffness.
C
Rotational conserving port.
R
Rotational conserving port.

\section*{Parameters}

\section*{Minimum spring rate}

Minimum value allowed for the spring rate (stiffness). The physical signal input saturates below the specified value. The parameter must be greater than zero. The default value is 0.01 . The default unit is ( \(N * m / r a d\) ).

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Nonlinear Rotational Spring | Nonlinear Translational Spring | Variable Translational Spring

Introduced in R2013a

\section*{Variable Translational Damper}

Translational viscous damper with variable damping coefficient


\section*{Library}

Couplings \& Drives/Springs \& Dampers

\section*{Description}

The block represents a translational viscous damper with variable damping coefficient. A physical signal input port provides the magnitude of the translational damping coefficient. The magnitude of the damping force is equal to the product of the physical signal input and the relative linear velocity between the two translational conserving ports. A minimum damping coefficient prevents non-physical negative damping values.

The translational damping force satisfies the following expression:
\[
F=\left\{\begin{array}{cc}
B \cdot v, \quad B \geq B_{\min } \\
B_{\min } \cdot v, & B<B_{\min }^{\prime}
\end{array}\right.
\]

The parameters are:
- F - Force transmitted through the translational damper between the two translational conserving ports
- \(B-\) Viscous damping coefficient
- \(B_{\text {min }}\) - Minimum allowed damping coefficient
- \(v\) - Relative linear velocity measured between the two translational conserving ports
- \(v_{R}\) - Linear velocity of port R
- \(v_{C}\) - Linear velocity of port C

The block applies equal and opposite damping forces on the two translational conserving ports. The sign of the damping force acting on port R is equal to the sign of the relative linear velocity. A positive linear velocity corresponds to a positive damping force acting on port R , and a negative damping force of equal magnitude acting on port C .

\section*{Assumptions and Limitations}
- The block represents strictly viscous damping.
- The value of the damping coefficient must be greater than or equal to zero.

\section*{Ports}

\section*{B}

Physical signal input port representing the variable translational damping coefficient.
C
Translational conserving port.
R
Translational conserving port.

\section*{Parameters}

\section*{Minimum damping coefficient}

Minimum value allowed for the variable damping coefficient. The physical signal input saturates below the specified value. The parameter must be greater than or equal to zero. The default value is \(0 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\).

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Nonlinear Rotational Damper | Nonlinear Translational Damper | Rotational Damper | Translational Damper | Variable Rotational Damper

Introduced in R2013a

\section*{Variable Translational Spring}

Translational spring with variable spring stiffness


\section*{Library}

Couplings \& Drives/Springs \& Dampers

\section*{Description}

The block represents a translational spring with variable spring stiffness. A physical signal input port provides the variable spring stiffness. The magnitude of the spring force is equal to the product of the physical signal input and the relative linear displacement between the two translational conserving ports. A minimum spring rate prevents nonphysical values.

The translational spring force satisfies the following expression:
\[
F=\left\{\begin{array}{cc}
K \cdot x, & K \geq K_{\min } \\
K_{\min } \cdot x & K<K_{\min }^{\prime}
\end{array}\right.
\]

The parameters are:
- F - Force transmitted through the spring between the two translational conserving ports
- \(K-\) Spring rate (stiffness)
- \(K_{\text {min }}-\) Minimum allowed spring rate (stiffness)
- \(x\) - Relative displacement between the two translational conserving ports according to \(x=x_{\text {init }}+x_{R}-x_{C}\)
- \(x_{\text {init }}\) - initial spring deformation
- \(x_{R}\) - Absolute displacement of translational conserving port R
- \(x_{C}-\) Absolute displacement of translational conserving port C

The block applies equal and opposite spring forces on the two translational conserving ports. The sign of the spring force acting on port R is equal to the sign of the relative linear displacement between the two ports. A positive linear velocity corresponds to a positive spring force acting on port R , and a negative spring force of equal magnitude acting on port C.

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Assumptions and Limitations}

The value of the variable spring stiffness must be greater than zero.

\section*{Ports}

\section*{K}

Physical signal input port representing the variable spring stiffness.
C
Translational conserving port.
R
Translational conserving port.

\section*{Parameters}

\section*{Minimum spring rate}

Minimum value allowed for the spring rate. The physical signal input saturates below the specified value. The parameter must be greater than zero. The default value is 1 \(\mathrm{N} / \mathrm{m}\).

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Nonlinear Rotational Spring | Nonlinear Translational Spring | Variable Rotational Spring

Introduced in R2013a

\section*{Vehicle Body}

Two-axle vehicle with longitudinal dynamics and motion and adjustable mass, geometry, and drag properties
Library: \(\quad\) Simscape / Driveline / Tires \& Vehicles


\section*{Description}

The Vehicle Body block represents a two-axle vehicle body in longitudinal motion. The vehicle can have the same or a different number of wheels on each axle. For example, two wheels on the front axle and one wheel on the rear axle. The vehicle wheels are assumed identical in size. The vehicle can also have a center of gravity (CG) that is at or below the plane of travel.

The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between axles due to acceleration and road profile. Optionally include pitch and suspension dynamics. The vehicle does not move vertically relative to the ground.

The block has an option to include an externally-defined mass and an externally-defined inertia. The mass, inertia, and center of gravity of the vehicle body can vary over the course of simulation in response to system changes.

\section*{Model}

The vehicle axles are parallel and form a plane. The longitudinal, \(x\), direction lies in this plane and perpendicular to the axles. If the vehicle is traveling on an incline slope, \(\beta\), the normal, \(z\), direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

This figure and table define the vehicle motion model variables.


Vehicle Dynamics and Motion

Vehicle Model Variables
\begin{tabular}{|l|l|}
\hline Symbol & Description \\
\hline\(g\) & Gravitational acceleration \\
\hline\(\beta\) & Incline angle \\
\hline\(m\) & Mass of the vehicle \\
\hline\(h\) & \begin{tabular}{l} 
Height of vehicle center of gravity (CG) \\
above the ground
\end{tabular} \\
\hline\(a, b\) & \begin{tabular}{l} 
Distance of front and rear axles, \\
respectively, from the normal projection \\
point of vehicle CG onto the common axle \\
plane
\end{tabular} \\
\hline\(V_{x}\) & \begin{tabular}{l} 
Velocity of the vehicle. When \(V_{x}>0\), the \\
vehicle moves forward. When \(V_{x}<0\), the \\
vehicle moves backward.
\end{tabular} \\
\hline\(V_{w}\) & \begin{tabular}{l} 
Wind speed. When \(V_{w}>0\), the wind is \\
headwind. When \(V_{w}<0\), the wind is \\
tailwind.
\end{tabular} \\
\hline\(n\) & Number of wheels on each axle \\
\hline\(F_{x f}, F_{x r}\) & \begin{tabular}{l} 
Longitudinal forces on each wheel at the \\
front and rear ground contact points, \\
respectively
\end{tabular} \\
\hline\(F_{z f}, F_{z r}\) & \begin{tabular}{l} 
Normal load forces on each wheel at the \\
front and rear ground contact points, \\
respectively
\end{tabular} \\
\hline\(A\) & \begin{tabular}{l} 
Effective frontal vehicle cross-sectional \\
area
\end{tabular} \\
\hline\(C_{d}\) & Aerodynamic drag coefficient \\
\hline\(F_{d}\) & Mass density of air \\
\hline & Aerodynamic drag force \\
\hline
\end{tabular}

\section*{Equations}

\section*{Vehicle Dynamics}

The vehicle motion is a result of the net effect of all the forces and torques acting on it. The longitudinal tire forces push the vehicle forward or backward. The weight mg of the vehicle acts through its center of gravity (CG). Depending on the incline angle, the weight pulls the vehicle to the ground and pulls it either backward or forward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.
\[
\begin{aligned}
& m \dot{V}_{x}=F_{x}-F_{d}-m g \cdot \sin \beta \\
& F_{x}=n\left(F_{x f}+F_{x r}\right) \\
& F_{d}=\frac{1}{2} C_{d} \rho A\left(V_{x}+V_{w}\right)^{2} \cdot \operatorname{sgn}\left(V_{x}+V_{w}\right)
\end{aligned}
\]

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear wheel.
\[
\begin{aligned}
& F_{z f}=\frac{-h\left(F_{d}+m g \sin \beta+m \dot{V}_{\chi}\right)+b \cdot m g \cos \beta}{n(a+b)} \\
& F_{z r}=\frac{+h\left(F_{d}+m g \sin \beta+m \dot{V}_{\chi}\right)+a \cdot m g \cos \beta}{n(a+b)}
\end{aligned}
\]

The wheel normal forces satisfy \(F_{z f}+F_{z r}=m g \frac{\cos \beta}{n}\).
If you include an externally-defined mass or inertia, the equations are shifted by the weighted value of the input.

\section*{Pitch dynamics}

The rate of the pitch that occurs during vehicle acceleration depends on three torque components and the inertia of the vehicle:
\[
\alpha=\frac{(f \cdot h)+\left(F_{z f} a\right)-\left(F_{z r} b\right)}{J}
\]

Where:
- \(\alpha\) is the pitch rate.
- \(f\) is the longitudinal force.
- \(J\) is the inertia.

If you choose a linear model for suspension stiffness and damping, the block uses small angle approximation for pitch calculations. If you choose a table lookup model, the block uses the vectors that you specify calculate pitch dynamics. For hard stop equations, see Translational Hard Stop.

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulating. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Limitations and Assumptions}

The Vehicle Body block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. As such, the equations assume that the wheels never lose contact. This constraint can result in negative normal forces.

\section*{Ports}

\section*{Input}

\section*{W - Headwind speed}
scalar
Physical signal input port for headwind speed.

\section*{beta - Road incline angle \\ scalar}

Physical signal input port for road incline angle.

\section*{CG - Center of gravity, in m \\ two-element vector}

Physical signal input port for the center of gravity, in m, of the externally-defined mass relative to the CG of the vehicle body.

\section*{Dependencies}

This port is visible only when the Externally-defined additional mass parameter in the Main settings is set to On.

\section*{M - Mass, in kg}
scalar
Physical signal input port for the mass, in kg , of the externally-defined mass.

\section*{Dependencies}

This port is visible only when the Externally-defined additional mass parameter in the Main settings is set to On.

\section*{J - External moment of inertia, in \(\mathbf{k g}^{*} \mathbf{m}^{\wedge} \mathbf{2}\) \\ scalar}

Physical signal input port for the moment of inertia, in \(\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\), of the externally-defined mass.

\section*{Dependencies}

This port is visible only when the Externally-defined additional mass parameter in the Main settings and the Pitch dynamics parameter in the Pitch settings are both set to On.

\section*{Output}

V - Longitudinal velocity
scalar
Physical signal output port for vehicle longitudinal velocity.

\section*{NF - Front axle normal force}

\section*{scalar}

Physical signal output port for normal force on the front axle. Wheel forces are considered positive if acting downwards.

\section*{NR — Rear axle normal force}

\section*{scalar}

Physical signal output port for normal force on the rear axle. Wheel forces are considered positive if acting downwards.

\section*{Conserving}

\author{
H - Horizontal motion \\ mechanical translational
}

Conserving port associated with the horizontal motion of the vehicle body. Connect tire traction motion to this port.

\section*{Parameters}

\section*{Main}

\section*{Mass - Vehicle mass}

1200 kg (default)
Mass of the vehicle.

\section*{Number of wheels per axle - Wheel count}

2 (default) | scalar number or a two-element array
Wheel counts on the front and rear axles. If the input is a scalar number, the wheel counts of the front and rear axles are assumed the same. For example, if the input is 2 , then the front and rear axles are each assumed to have two wheels.

If the input is a two-element array, the first number is the front-axle wheel count and the second number the rear-axle wheel count. For example, if the input is the array [ 2,1\(]\), then the front axle is assumed to have two wheels and the rear axle one wheel.

\section*{Horizontal distance from CG to front axle - CG-to-front axle distance 1.4 m (default)}

Horizontal distance, \(a\), from the center of gravity to the front wheel axle of the vehicle.
Horizontal distance from CG to rear axle - CG-to-rear axle distance 1.6 m (default)

Horizontal distance, \(b\), from the center of gravity to the rear wheel axle of the vehicle.

\section*{CG height above ground - CG-to-ground distance}
0.5 m (default)

Distance, \(h\), between the center of gravity of the vehicle and the ground.

\section*{Gravitational acceleration - Gravitational acceleration}
\(9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2\) (default)
Acceleration due to gravitational force acting at the center of gravity of the vehicle.
```

Externally-defined additional mass - Variable mass option
Off (default)| On

```

Option to include as time- or event-variant mass that affects the mass and CG of the vehicle body.

\section*{Dependencies}

The \(\mathbf{C G}, \mathbf{M}\), and \(\mathbf{J}\) ports are visible only when this parameter is set to On. Exposure of the J port also requires that you select On for the Pitch dynamics parameter in the Pitch settings.

\section*{Negative normal force warning - Warning}

Off (default) | On
To see a warning when the block calculates negative values for normal force during simulation, select On. The block can generate negative forces because the equations assume that the wheels never lose contact.

\section*{Drag}

Frontal area - Effective cross-sectional area
3 m^2 (default)

Effective cross-sectional area, \(A\), presented by the vehicle in longitudinal motion. The block uses this value to calculate the aerodynamic drag force on the vehicle.

\section*{Drag coefficient - Aerodynamic drag coefficient}

\section*{0.4 (default)}

Aerodynamic drag coefficient, \(C_{\mathrm{d}}\). The block uses this value to calculate the aerodynamic drag force on the vehicle.

\section*{Air density - Ambient air density}

\section*{\(1.18 \mathrm{~kg} / \mathrm{m}^{\wedge} 3\) (default)}

Density of the air that surrounds the vehicle.

\section*{Pitch}

The table shows how the visibility of some parameters depends on the option that you choose for other parameters. To learn how to read the table, see "Parameter Dependencies" on page B-2.

Pitch Parameter Dependencies


\section*{Pitch dynamics - Pitch dynamics modelling Off (default) | On}

Option to model pitch dynamics.

\section*{Dependencies}

Selecting 0 n for this parameter enables parameters for:
- Suspension model
- Hard-stop model
- Initial pitch conditions

The \(\mathbf{J}\) port is visible only when this parameter is set to 0 n . Exposure of the \(\mathbf{J}\) port also requires that you select \(0 n\) for the Externally-defined additional mass parameter in the Main settings.

For more information, see the Pitch Parameter Dependencies table.

\section*{Pitch moment of inertia - Pitch moment of inertia 4000 kg/m^2 (default) | positive scalar}

Moment of inertia for pitch calculations.

\section*{Dependencies}

This parameter is enabled when you set Pitch dynamics to On.
For more information, see the Pitch Parameter Dependencies table.

\section*{Suspension model - Suspension parameterization method Linear (default)|Table lookup}

Parameterization method for suspension modeling.
You parameterize the suspension using stiffness and damping data. To specify the data using scalar values, select Linear. To specify the data using vector values, select By table lookup.

\section*{Dependencies}

This parameter is enabled when you set Pitch dynamics to On.
For more information, see the Pitch Parameter Dependencies table.

\section*{Front suspension stiffness - Front suspension stiffness \\ le4 N/m (default) | positive scalar}

Front suspension stiffness per axle.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to Linear

For more information, see the Pitch Parameter Dependencies table.
Front suspension damping - Front suspension damping
1e4N/(m/s) (default) | positive scalar
Front suspension damping per axle.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Suspension model to Linear

For more information, see the Pitch Parameter Dependencies table.
Rear suspension stiffness - Rear suspension stiffness
le4 N/m (default) | positive scalar
Rear suspension stiffness per axle.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Suspension model to Linear

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear suspension damping - Rear suspension damping}

1e4N/(m/s) (default) | positive scalar

Rear suspension damping per axle.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to Linear

For more information, see the Pitch Parameter Dependencies table.

\section*{Front suspension stiffness force vector - Front suspension stiffness force [-2000, -1000, 0, 1000, 2000] N (default) | increasing vector}

Stiffness force of the front suspension. Specify the output values for the lookup table as a vector. The number of elements in the output vector must be the same as the number of elements in the input vector. The input vector parameter is the Front suspension deformation vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Front suspension deformation vector - Front suspension deformation [-.4, -.2, 0, .2, .4] m (default)| increasing vector}

Deformation of the front suspension specified in terms of displacement. Specify the input values for the lookup table as a vector. The values of the elements in the vector must increase from left to right. The minimum number of elements in the vector depends on the interpolation method that you select. For linear interpolation, provide at least two elements. For smooth interpolation, provide at least three elements. The output vector parameter is the Front suspension stiffness force vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Front suspension damping force vector - Front suspension damping force} [-200, -100, 0, 100, 200] N (default) | increasing vector

Damping force of the front suspension. Specify the output values for the lookup table as a vector. The number of elements in the output vector must be the same as the number of elements in the input vector. The input vector parameter is the Front suspension velocity vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Front suspension velocity vector - Front suspension velocity \([-4,-2,0,2,4] \mathrm{m} / \mathrm{s}\) (default) | increasing vector}

Velocity of the front suspension. Specify the input values for the lookup table as a vector. The values of the elements in the vector must increase from left to right. The minimum number of elements in the vector depends on the interpolation method that you select. For linear interpolation, provide at least two elements. For smooth interpolation, provide at least three elements. The output vector parameter is the Front suspension damping force vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\footnotetext{
Rear suspension stiffness force vector - Rear suspension stiffness force [-2000, -1000, 0, 1000, 2000] N (default) |increasing vector
}

Stiffness force of the rear suspension. Specify the output values for the lookup table as a vector. The number of elements in the output vector must be the same as the number of elements in the input vector. The input vector parameter is the Rear suspension deformation vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear suspension deformation vector - Rear suspension deformation [-.4, -. 2, 0, .2, .4] m (default) | increasing vector}

Deformation of the rear suspension specified in terms of displacement. Specify the input values for the lookup table as a vector. The values of the elements in the vector must increase from left to right. The minimum number of elements in the vector depends on the interpolation method that you select. For linear interpolation, provide at least two elements. For smooth interpolation, provide at least three elements. The output vector parameter is the Rear suspension stiffness force vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear suspension damping force vector - Rear suspension damping force [-200, -100, 0, 100, 200] N (default) | increasing vector}

Damping force of the rear suspension. Specify the output values for the lookup table as a vector. The number of elements in the output vector must be the same as the number of elements in the input vector. The input vector parameter is the Rear suspension velocity vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear suspension velocity vector - Rear suspension velocity \([-4,-2,0,2,4] \mathrm{m} / \mathrm{s}\) (default) | increasing vector}

Velocity of the rear suspension. Specify the input values for the lookup table as a vector. The values of the elements in the vector must increase from left to right. The minimum number of elements in the vector depends on the interpolation method that you select. For linear interpolation, provide at least two elements. For smooth interpolation, provide at least three elements. The output vector parameter is the Rear suspension damping force vector parameter.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Interpolation method - Interpolation method \\ linear (default)| smooth}

Interpolation methods for approximating the output value when the input value is between two consecutive grid points are:
- Linear - Select this default option to get the best performance. Provide at least two values per dimension.
- Smooth - Select this option to produce a continuous curve with continuous first-order derivatives. Provide at least three values per dimension.

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Extrapolation method - Extrapolation method}
linear (default)|smooth
Extrapolation method for determining the output value when the input value is outside the range specified in the argument list are:
- Linear - Produces a curve with continuous first-order derivatives in the extrapolation region and at the boundary with the interpolation region.
- Nearest - Produces an extrapolation that does not go above the highest point in the data or below the lowest point in the data.

For more information on extrapolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Suspension model to By table lookup

For more information, see the Pitch Parameter Dependencies table.

\section*{Hard stop - Hard-stop modeling option}

\section*{Off (default) | On}

Option to model hardstops for the front and rear suspension.

\section*{Dependencies}

This parameter is enabled when you set the Pitch dynamics to 0 n :
Selecting \(0 n\) for this parameter enables parameters for the front and rear hard stops:
- Upper bound
- Lower bound
- Contact stiffness
- Contact damping

For more information, see the Pitch Parameter Dependencies table.

\section*{Front upper bound - Hardstop front suspension upper bound} . 25 (default)

Upper bound of the hard stop for the front suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Hard stop to On

For more information, see the Pitch Parameter Dependencies table.

\section*{Front lower bound - Vehicle front lower bound} -. 25 (default)

Lower bound of the hard stop for the front suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Hard stop to On

For more information, see the Pitch Parameter Dependencies table.

\section*{Front contact stiffness - Vehicle front contact stiffness 1e6 (default)}

Contact stiffness of the hard stop for the front suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On

\section*{- Hard stop to 0n}

For more information, see the Pitch Parameter Dependencies table.

\section*{Front contact damping - Vehicle front contact damping 150 (default)}

Contact damping of the hard stop for the front suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Hard stop to \(0 n\)

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear upper bound - Vehicle rear upper bound}

\section*{.25 (default)}

Upper bound of the hard stop for the rear suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Hard stop to On

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear lower bound - Vehicle rear lower bound -. 25 (default)}

Lower bound of the hard stop for the rear suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to 0n
- Hard stop to On

For more information, see the Pitch Parameter Dependencies table.

\section*{Rear contact stiffness - Vehicle rear contact stiffness 1e6 (default)}

Contact stiffness of the hard stop for the rear suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Hard stop to 0n

For more information, see the Pitch Parameter Dependencies table.
Rear contact damping - Vehicle rear contact damping 150 (default)

Contact damping of the hard stop for the rear suspension.

\section*{Dependencies}

This parameter is enabled when you set both of these options:
- Pitch dynamics to On
- Hard stop to On

For more information, see the Pitch Parameter Dependencies table.

\section*{Initial pitch - Pitch at the beginning of the simulation 0 rad (default)}

Pitch at the beginning of the simulation.

\section*{Dependencies}

This parameter is enabled when you set Pitch dynamics to On.
For more information, see the Pitch Parameter Dependencies table.

\section*{Initial pitch rate - Pitch rate at the beginning of the simulation} \(0 \mathrm{rad} / \mathrm{s}\) (default)

Pitch rate at the beginning of the simulation.

\section*{Dependencies}

This parameter is enabled when you set Pitch dynamics to On.
For more information, see the Pitch Parameter Dependencies table.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Tire (Friction Parameterized) | Tire (Magic Formula) | Tire (Simple) | Tire-Road Interaction (Magic Formula) | Translational Hard Stop
}

\author{
Topics \\ "Complete Vehicle Model" \\ Introduced in R2011a
}

\section*{Worm Gear}

Worm gear with adjustable gear ratio and friction losses


\section*{Library}

Simscape / Driveline / GearsSimscape / Driveline / Gears

\section*{Description}

The block represents a rotational gear that constrains the two connected driveline axes, worm (W) and gear (G), to rotate together in a fixed ratio that you specify. You can choose whether the gear rotates in a positive or negative direction. Right-hand rotation is the positive direction. If the worm thread is right-hand, \(\omega_{\mathrm{W}}\) and \(\omega_{\mathrm{G}}\) have the same sign. If the worm thread is left-hand, \(\omega_{\mathrm{W}}\) and \(\omega_{\mathrm{G}}\) have opposite signs.

\section*{Thermal Modeling}

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.

\section*{Worm Gear Model}

\section*{Model Variables}
\begin{tabular}{|l|l|}
\hline\(R_{\mathrm{WG}}\) & Gear ratio \\
\hline\(\omega_{\mathrm{W}}\) & Worm angular velocity \\
\hline\(\omega_{\mathrm{G}}\) & Gear angular velocity \\
\hline\(\alpha\) & Normal pressure angle \\
\hline\(\lambda\) & Worm lead angle \\
\hline\(L\) & Worm lead \\
\hline\(d\) & Worm pitch diameter \\
\hline\(\tau_{\mathrm{G}}\) & Gear torque \\
\hline\(\tau_{\mathrm{W}}\) & Torque on the worm \\
\hline\(\tau_{\text {loss }}\) & \begin{tabular}{l} 
Torque loss due to meshing friction. The loss depends on the device efficiency \\
and the power flow direction. To avoid abrupt change of the friction torque at \\
\(\omega_{\mathrm{G}}=0\), the friction torque is introduced via the hyperbolic function.
\end{tabular} \\
\hline\(\tau_{\mathrm{fr}}\) & Steady-state value of the friction torque at \(\omega_{\mathrm{G}} \rightarrow \infty\). \\
\hline\(k\) & Friction coefficient \\
\hline\(\eta_{\mathrm{WG}}\) & Torque transfer efficiency from worm to gear \\
\hline\(\eta_{G W}\) & Torque transfer efficiency from gear to worm \\
\hline\(p_{\mathrm{th}}\) & Power threshold \\
\hline\(\left[\mu_{\mathrm{W}} \mu_{\mathrm{G}}\right]\) & Vector of viscous friction coefficients for the worm and gear \\
\hline
\end{tabular}

\section*{Ideal Gear Constraint and Gear Ratio}

Worm gear imposes one kinematic constraint on the two connected axes:
\(\omega_{\mathrm{W}}\)
\(=\)
\(R_{\mathrm{WG}} \omega_{\mathrm{G}}\)
The two degrees of freedom are reduced to one independent degree of freedom. The forward-transfer gear pair convention is \((1,2)=(W, G)\).

The torque transfer is:
\begin{tabular}{lllllll}
\(R_{\mathrm{WG}} \tau_{\mathrm{W}}\) & - & \(\tau_{\mathrm{G}}\) & - & \(\tau_{\text {loss }}\) & \(=\) & 0
\end{tabular}
with \(\tau_{\text {loss }}=0\) in the ideal case.

\section*{Nonideal Gear Constraint}

In the nonideal case, \(\tau_{\text {loss }} \neq 0\). For general considerations on nonideal gear modeling, see "Model Gears with Losses".

\section*{Geometric Surface Contact Friction}

In the contact friction case, \(\eta_{\mathrm{WG}}\) and \(\eta_{\mathrm{GW}}\) are determined by:
- The worm-gear threading geometry, specified by lead angle \(\lambda\) and normal pressure angle \(\alpha\).
- The surface contact friction coefficient \(k\).
\begin{tabular}{lllllll}
\(\eta_{\mathrm{WG}}\) & \(=\) & \((\cos \alpha\) & - & \(k \cdot \tan \lambda) /(\cos \alpha\) & + & \(k / \tan \lambda)\) \\
\(\eta_{\mathrm{GW}}\) & \(=\) & \((\cos \alpha\) & - & \(k / \tan \lambda) /(\cos \alpha\) & + & \(k \cdot \tan \lambda)\)
\end{tabular}

\section*{Constant Efficiencies}

In the constant friction case, you specify \(\eta_{\mathrm{WG}}\) and \(\eta_{\mathrm{GW}}\), independently of geometric details.

\section*{Self-Locking and Negative Efficiency}
\(\eta_{\text {GW }}\) has two distinct regimes, depending on lead angle \(\lambda\), separated by the self-locking point at which \(\eta_{\mathrm{GW}}=0\) and \(\cos \alpha=k / \tan \lambda\).
- In the overhauling regime, \(\eta_{\mathrm{GW}}>0\), and the force acting on the nut can rotate the screw.
- In the self-locking regime, \(\eta_{\mathrm{GW}}<0\), and an external torque must be applied to the screw to release an otherwise locked mechanism. The more negative is \(\eta_{\mathrm{GW}}\), the larger the torque must be to release the mechanism.
\(\eta_{\mathrm{WG}}\) is conventionally positive.

\section*{Meshing Efficiency}

The efficiencies \(\eta\) of meshing between worm and gear are fully active only if the transmitted power is greater than the power threshold.

If the power is less than the threshold, the actual efficiency is automatically regularized to unity at zero velocity.

\section*{Viscous Friction Force}

The viscous friction coefficient \(\mu_{\mathrm{W}}\) controls the viscous friction torque experienced by the worm from lubricated, nonideal gear threads and viscous bearing losses. The viscous friction torque on a worm driveline axis is \(-\mu_{\mathrm{W}} \omega_{\mathrm{W}}\). \(\omega_{\mathrm{W}}\) is the angular velocity of the worm with respect to its mounting.

The viscous friction coefficient \(\mu_{\mathrm{G}}\) controls the viscous friction torque experienced by the gear, mainly from viscous bearing losses. The viscous friction torque on a gear driveline axis is \(-\mu_{\mathrm{G}} \omega_{\mathrm{G}} . \omega_{\mathrm{G}}\) is the angular velocity of the gear with respect to its mounting.

\section*{Limitations}
- Gear inertia is assumed negligible.
- Gears are treated as rigid components.
- Coulomb friction slows down simulation. See "Adjust Model Fidelity".

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline W & \begin{tabular}{l} 
Rotational conserving port representing the \\
worm component
\end{tabular} \\
\hline G & \begin{tabular}{l} 
Rotational conserving port representing the \\
gear component
\end{tabular} \\
\hline H & \begin{tabular}{l} 
Thermal conserving port for thermal \\
modeling
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Main}

\section*{Gear ratio}

Gear or transmission ratio \(R_{W G}\) determined as the ratio of the worm angular velocity to the gear angular velocity. The default is 25 .

\section*{Worm thread type}

Choose the directional sense of gear rotation corresponding to positive worm rotation. The default is Right-hand. If you select Left-hand, rotation of the worm in the generally-assigned positive direction results in the gear rotation in negative direction.

\section*{Meshing Losses}

Parameters for meshing losses vary with the block variant chosen-that with a thermal port for thermal modeling or that without a thermal port.

\section*{Without Thermal Port}

\section*{Friction model}

Select how to implement friction losses from nonideal meshing of gear threads. The default is No meshing losses - Suitable for HIL simulation.
- No meshing losses - Suitable for HIL simulation - Gear meshing is ideal.
- Constant efficiency - Transfer of torque between worm and gear is reduced by friction. If you select this option, the panel expands.

\section*{Constant Efficiency}

\section*{Friction parametrization}

Select how to characterize the friction between gear threads. The default is Friction coefficient and geometrical parameters.
- Friction coefficient and geometrical parameters - Friction is determined by contact friction between surfaces.

\section*{Normal pressure angle}

The thread pressure angle \(\alpha\) in the normal plane. Must be greater than zero and less than 90 degrees. The default is 17.5 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Lead angle}

Thread helix angle \(\lambda=\arctan [L /(\pi d)] . L\) is the worm lead, \(d\) is the worm pitch diameter. Must be greater than zero. The default is 20 .

From the drop-down list, choose units. The default is degrees (deg).

\section*{Friction coefficient}

Dimensionless coefficient of normal friction in the thread. Must be greater than zero. The default is 0.08 .
- Efficiencies - Friction is determined by constant efficiencies \(0<\eta<\) 1. If you select this option, the panel changes from its default.

\section*{Efficiencies}

\section*{Worm-gear efficiency}

Efficiency \(\eta_{\text {WG }}\) of the power transfer from worm to gear.

\section*{Gear-worm efficiency}

Efficiency \(\eta_{\mathrm{GW}}\) of the power transfer from gear to worm.

\section*{Power threshold}

Power threshold above which full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{With Thermal Port}

\section*{Temperature}

Array of temperatures used to construct a 1-D temperature-efficiency lookup table. The array values must increase left to right. The temperature array must be the same size as the Efficiency array. The default array is [280 300 320] K.

\section*{Worm-gear efficiency}

Array of component efficiencies with the worm as the driver-that is, with power flowing from the worm to the gear. The array values are the efficiencies at the
temperatures in the Temperature array. The two arrays must be the same size. The default array is \(\left[\begin{array}{lll}0.75 & 0.7 & 0.65\end{array}\right]\).

\section*{Gear-worm efficiency}

Array of component efficiencies with the gear as the driver-that is, with power flowing from the gear to the worm. The array values are the efficiencies at the temperatures in the Temperature array. The two arrays must be the same size. The default array is [0.5 0.45 0.4].

\section*{Power threshold}

Power threshold above which the full efficiency factor is in effect. A hyperbolic tangent function smooths the efficiency factor between zero at rest and the value provided by the temperature-efficiency lookup table at the power threshold. The default value is 0.001 W .

\section*{Viscous Losses}

\section*{Viscous friction coefficients at worm (W) and gear (G)}

Vector of viscous friction coefficients [ \(\mu_{\mathrm{W}} \mu_{\mathrm{G}}\) ], for the worm and gear, respectively. The default is [0 0].

From the drop-down list, choose units. The default is newton-meters/(radians/second) \((N * m /(\mathrm{rad} / \mathrm{s}))\).

\section*{Thermal Port}

\section*{Thermal mass}

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is \(50 \mathrm{~J} / \mathrm{K}\).

\section*{Initial temperature}

Component temperature at the start of simulation. The initial temperature alters the component efficiency according to an efficiency vector that you specify, affecting the starting meshing or friction losses. The default value is 300 K .
Real-Time Simulation
Hardware-in-the-Loop Simulation
For optimal simulation performance, use the Meshing Losses > Friction modelparameter default setting, No meshing losses - Suitable for HIL simulation.
Extended Capabilities
C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).
See Also
Simscape Blocks
Leadscrew | Sun-Planet | Sun-Planet Worm Gear
Topics"Basic Motion, Torque, and Force Modeling""Model Thermal Losses in Driveline Components""Prepare Simscape Driveline Models for Real-Time Simulation Using Simscape Checks"
Introduced in R2011a

Technical Conventions

\section*{Driveline Abbreviations and Conventions}

\section*{In this section...}
```

"Abbreviations" on page A-2

```
"Angular Motion" on page A-2
"Gear Ratios" on page A-2

\section*{Abbreviations}

An important abbreviation is DoF, which means degree of freedom and refers to one coordinate of angular motion. All driveline rotational DoFs are measured with respect to a single absolute coordinate system at rest.

\section*{Angular Motion}

Standard symbols for angular motion analysis include the following:
\begin{tabular}{|l|l|}
\hline Symbol & Meaning (Units) \\
\hline\(r\) & Gear radius \\
\hline\(N\) & Number of gear teeth \\
\hline\(g\) & Gear ratio \\
\hline\(\theta\) & Angle \\
\hline\(\omega\) & Angular velocity \\
\hline\(\tau\) & Torque \\
\hline
\end{tabular}

\section*{Gear Ratios}

For a pair of coupled, coplanar gear wheels, the gear ratio \(g_{21}\) of gear 2 to gear 1 is defined as the ratio of the second gear wheel radius to the first. This definition is equivalent to the ratio of the number of teeth on the second gear wheel to the number of teeth on the first.
\(g_{21} \quad \equiv \quad r_{2} / r_{1} \quad=\quad N_{2} / N_{1}\)

The gear ratio is the ratio of torques and the reciprocal of the angular velocity ratio.
\(\tau_{2} / \tau_{1}\)
\(=\)
\(\omega_{1} / \omega_{2}\)
For gear boxes made of more than two gear wheels, the gear ratio is defined to be the ratio of torques or the reciprocal of the ratio of angular velocities, between the output and input shafts.

If the gear is reversing, the output \(\omega\) and \(\tau\) have opposite signs from the input \(\omega\) and \(\tau\).

\section*{Parameter Dependencies}

\section*{Parameter Dependencies}

A Simscape block parameter is considered visible when it appears in the Simulink Property Inspector, in a block dialog box, or as a block choice on the Simscape context menu. A block parameter is considered configurable or enabled when you can configure it by selecting an option, entering a value, or selecting or clearing a check box. Parameters that are visible but are not enabled are typically dimmed.

The visibility and configurability of some parameters depend on the options that you select for other parameters. Parameter dependencies are typically listed in the parameter description in the documentation for the block. For some blocks, the documentation also includes a parameter dependency table.

\section*{Parameter Dependency Tables}

Parameter dependency tables show how the visibility and configurability of some parameters depend on the options that you select for other parameters.

Parameter dependency tables indicate which parameter options affect the visibility of other parameters. For example, the next table shows the dependencies for the Effects and Initial Conditions parameters for the Pipe (2P) block from the Simscape > Foundation Library > Two-Phase Fluid > Elements library.

The row numbers in this table are for reference only. The first column of a parameter dependency table typically includes all parameters that are visible by default.

Parameters that affect the visibility or configurability of other parameters are shown in bold text. The options for the parameters that affect other parameters are shown in italic text in the following row of the table. Parameters that do not affect other parameters are shown in plain text.

Effects and Initial Conditions Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Row & \multicolumn{6}{|l|}{Parameters and Options} \\
\hline 1 & \multicolumn{6}{|l|}{Fluid Inertia} \\
\hline 2 & \multicolumn{3}{|l|}{Off} & \multicolumn{3}{|l|}{On} \\
\hline 3 & \multicolumn{3}{|l|}{Initial fluid regime} & \multicolumn{3}{|l|}{Initial fluid regime} \\
\hline 4 & Subcooled liquid & Two-phase mixture & Superheate d vapor & Subcooled liquid & Two-phase mixture & Superheate d vapor \\
\hline 5 & Initial fluid pressure \\
\hline 6 & Initial fluid temperature & Initial fluid vapor quality & Initial fluid temperature & Initial fluid temperature & Initial fluid vapor quality & Initial fluid temperature \\
\hline 7 & & & & Initial mass flow rate from port A to port B & Initial mass flow rate from port A to port B & Initial mass flow rate from port A to port B \\
\hline 8 & Phase change time constant \\
\hline
\end{tabular}

The figure shows the Effects and Initial Conditions parameters that are visible by default on the block dialog box for the Pipe (2P) block.

\section*{Settings}
\begin{tabular}{l|l|l|l|}
\hline Geometry & Friction and Heat Transfer & Effects and Initial Conditions & \\
\hline Fluid inertia: & Off & & \\
Initial fluid regime: & Subcooled liquid & MPa \\
Initial fluid pressure: & 0.101325 & K & \\
\hline Initial fluid temperature: & 293.15 & s & \(\checkmark\) \\
\hline Phase change time constant: & 0.1 & \(\checkmark\) & \\
\hline
\end{tabular}

If you change the Fluid Inertia parameter from \(0 f f\) to \(0 n\), the Initial mass flow rate from port A to port \(\mathbf{B}\) parameter becomes visible. The table shows this dependency in rows 1,2 , and 7 .


If you then change the Initial fluid regime parameter from Subcooled liquid to Two-phase mixture, the Initial fluid temperature parameter is hidden and Initial fluid vapor quality becomes visible. The table shows these dependencies in rows 3, 4, and 6.


Parameter dependency tables also indicate which parameter options enable other parameters. For example, the next table shows the dependencies for the parameters for the Solver Configuration block from the Simscape > Foundation Library > Utilities library. The first column in the table contains row numbers, which are for reference only. The second column includes all parameters that are visible by default.

Parameters that affect the visibility and configurability of other parameters are shown in bold text. The options for the parameters that affect other parameters are shown as selected and cleared check boxes in the following row of the table. Parameters that are shown in plain text are enabled but do not affect other parameters. Parameters that are not enabled are not shown.

Solver Configuration Block Parameter Dependencies
\begin{tabular}{|c|c|c|c|}
\hline Row & \multicolumn{3}{|l|}{Parameters and Options} \\
\hline 1 & \multicolumn{3}{|l|}{Start simulation from steady state} \\
\hline 2 & \multicolumn{3}{|l|}{Consistency tolerance} \\
\hline 3 & \multicolumn{3}{|l|}{Use local Solver} \\
\hline 4 & \multirow[t]{3}{*}{\(\square\)} & \multicolumn{2}{|l|}{\(\square\)} \\
\hline 5 & & \multicolumn{2}{|l|}{Solver type} \\
\hline 6 & & \multicolumn{2}{|l|}{Sample time} \\
\hline 7 & Use fixed-cost runtime consistency iterations & \multicolumn{2}{|l|}{Use fixed-cost runtime consistency iterations} \\
\hline 8 & \multirow[t]{3}{*}{\(\square\)} & \(\square\) & \(\square\) \\
\hline 9 & & Nonlinear iterations & \\
\hline 10 & & & \\
\hline 11 & \multicolumn{3}{|l|}{Linear Algebra} \\
\hline 12 & \multicolumn{3}{|l|}{Equation formulation} \\
\hline 13 & \multicolumn{3}{|l|}{Delay memory budget [kB]} \\
\hline 14 & \multicolumn{3}{|l|}{Apply filtering at 1-D/3-D connections when needed} \\
\hline 15 & \(\square\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\square\)}} \\
\hline 16 & Filtering time constant & & \\
\hline
\end{tabular}

The figure shows the parameters that are visible by default on the block dialog box for the Solver Configuration block. The dimmed parameters, for example, Solver type, are not enabled.

\section*{Block Parameters: Solver Configuration}

\section*{Solver Configuration}

Defines solver settings to use for simulation.
Parameters
Start simulation from steady state
Consistency tolerance:

1e-09
\(\square\) Use local solver
Solver type: Backward Euler
Sample time:
0.001
\(\square\) Use fixed-cost runtime consistency iterations
Nonlinear iterations:

3

Mode iterations: 2
Linear Algebra:
Sparse
Delay memory budget [kB]:

1024

Apply filtering at 1-D/3-D connections when needed
Filtering time constant:
0.001

OK
Cancel
Help
Apply

If you select the Use local solver check box, the Use fixed-cost runtime consistency check box becomes selected and these parameters become enabled.
- Solver type
- Nonlinear iterations
- Sample time

Selecting Use local solver does not enable the Mode iterations parameter. The Mode iterations parameter is only enabled when the Use local solver check box is cleared while Use fixed-cost runtime consistency check box is selected.

The table shows these dependencies in rows 3-10.

\section*{Solver Configuration}

Defines solver settings to use for simulation.
Parameters
Start simulation from steady state
\begin{tabular}{ll} 
Consistency & \(1 \mathrm{e}-09\) \\
tolerance: &
\end{tabular}
\(\checkmark\) Use local solver
\begin{tabular}{ll|} 
Solver type: & Backward Euler \\
Sample time: & 0.001 \\
\hline
\end{tabular}
\(\checkmark\) Use fixed-cost runtime consistency iterations
Nonlinear iterations:

3

Mode iterations: 2


Equation formulation:

Time

Delay memory budget [kB]:

1024

Apply filtering at 1-D/3-D connections when needed
Filtering time constant:
\[
0.001
\]

OK


Apply

\section*{Bibliography}
[1] Genta, G., Motor Vehicle Dynamics: Modeling and Simulation, Singapore, World Scientific, 1997, chapters 2, 3, and 4
[2] Jurgen, R. K., Electronic Transmission Controls, Troy, Michigan, Society of Automotive Engineers, 2000
[3] Juvinall, R. C., Fundamentals of Machine Component Design, New York, John Wiley \& Sons, 1983
[4] The MathWorks Inc., https://www.mathworks.com/industries/auto/, Industries: Automotive
[5] Meriam, J. L., and L. G. Kraige, Dynamics, Volume 2 of Engineering Mechanics, New York, John Wiley \& Sons, 1987
[6] Nwagboso, C. O., Automotive Sensory Systems, London, Chapman \& Hall, 1993
[7] Pacejka, H. B. Tire and Vehicle Dynamics, Society of Automotive Engineers and Butterworth-Heinemann, Oxford, 2002, chapters 1,4,7, and 8
[8] Shingley, J. E., C. R. Mishke, and R. G. Budynas, Mechanical Engineering Design, McGraw-Hill, 2004
[9] Society of Automotive Engineers, https://www.sae.org, see "SAE Store"
[10] Wong, J. Y., Theory of Ground Vehicles, 3rd Ed., New York, Interscience, 2001```


[^0]:    Tooth overlap to engage - Tooth overlap engagement threshold 3 mm (default) | positive scalar

[^1]:    Cone clutch ring stop stiffness - Cone clutch ring stop stiffness 10e5 N/m (default) | positive scalar

